33,350 research outputs found

    Computing with and without arbitrary large numbers

    Full text link
    In the study of random access machines (RAMs) it has been shown that the availability of an extra input integer, having no special properties other than being sufficiently large, is enough to reduce the computational complexity of some problems. However, this has only been shown so far for specific problems. We provide a characterization of the power of such extra inputs for general problems. To do so, we first correct a classical result by Simon and Szegedy (1992) as well as one by Simon (1981). In the former we show mistakes in the proof and correct these by an entirely new construction, with no great change to the results. In the latter, the original proof direction stands with only minor modifications, but the new results are far stronger than those of Simon (1981). In both cases, the new constructions provide the theoretical tools required to characterize the power of arbitrary large numbers.Comment: 12 pages (main text) + 30 pages (appendices), 1 figure. Extended abstract. The full paper was presented at TAMC 2013. (Reference given is for the paper version, as it appears in the proceedings.

    The RAM equivalent of P vs. RP

    Full text link
    One of the fundamental open questions in computational complexity is whether the class of problems solvable by use of stochasticity under the Random Polynomial time (RP) model is larger than the class of those solvable in deterministic polynomial time (P). However, this question is only open for Turing Machines, not for Random Access Machines (RAMs). Simon (1981) was able to show that for a sufficiently equipped Random Access Machine, the ability to switch states nondeterministically does not entail any computational advantage. However, in the same paper, Simon describes a different (and arguably more natural) scenario for stochasticity under the RAM model. According to Simon's proposal, instead of receiving a new random bit at each execution step, the RAM program is able to execute the pseudofunction RAND(y)\textit{RAND}(y), which returns a uniformly distributed random integer in the range [0,y)[0,y). Whether the ability to allot a random integer in this fashion is more powerful than the ability to allot a random bit remained an open question for the last 30 years. In this paper, we close Simon's open problem, by fully characterising the class of languages recognisable in polynomial time by each of the RAMs regarding which the question was posed. We show that for some of these, stochasticity entails no advantage, but, more interestingly, we show that for others it does.Comment: 23 page

    Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer

    Get PDF
    A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. This paper considers factoring integers and finding discrete logarithms, two problems which are generally thought to be hard on a classical computer and have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical quantum computer. These algorithms take a number of steps polynomial in the input size, e.g., the number of digits of the integer to be factored.Comment: 28 pages, LaTeX. This is an expanded version of a paper that appeared in the Proceedings of the 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, Nov. 20--22, 1994. Minor revisions made January, 199
    corecore