31 research outputs found

    Tropical polyhedra are equivalent to mean payoff games

    Full text link
    We show that several decision problems originating from max-plus or tropical convexity are equivalent to zero-sum two player game problems. In particular, we set up an equivalence between the external representation of tropical convex sets and zero-sum stochastic games, in which tropical polyhedra correspond to deterministic games with finite action spaces. Then, we show that the winning initial positions can be determined from the associated tropical polyhedron. We obtain as a corollary a game theoretical proof of the fact that the tropical rank of a matrix, defined as the maximal size of a submatrix for which the optimal assignment problem has a unique solution, coincides with the maximal number of rows (or columns) of the matrix which are linearly independent in the tropical sense. Our proofs rely on techniques from non-linear Perron-Frobenius theory.Comment: 28 pages, 5 figures; v2: updated references, added background materials and illustrations; v3: minor improvements, references update

    Obstructions to Faster Diameter Computation: Asteroidal Sets

    Get PDF
    Full version of an IPEC'22 paperAn extremity is a vertex such that the removal of its closed neighbourhood does not increase the number of connected components. Let ExtαExt_{\alpha} be the class of all connected graphs whose quotient graph obtained from modular decomposition contains no more than α\alpha pairwise nonadjacent extremities. Our main contributions are as follows. First, we prove that the diameter of every mm-edge graph in ExtαExt_{\alpha} can be computed in deterministic O(α3m3/2){\cal O}(\alpha^3 m^{3/2}) time. We then improve the runtime to linear for all graphs with bounded clique-number. Furthermore, we can compute an additive +1+1-approximation of all vertex eccentricities in deterministic O(α2m){\cal O}(\alpha^2 m) time. This is in sharp contrast with general mm-edge graphs for which, under the Strong Exponential Time Hypothesis (SETH), one cannot compute the diameter in O(m2−ϵ){\cal O}(m^{2-\epsilon}) time for any ϵ>0\epsilon > 0. As important special cases of our main result, we derive an O(m3/2){\cal O}(m^{3/2})-time algorithm for exact diameter computation within dominating pair graphs of diameter at least six, and an O(k3m3/2){\cal O}(k^3m^{3/2})-time algorithm for this problem on graphs of asteroidal number at most kk. We end up presenting an improved algorithm for chordal graphs of bounded asteroidal number, and a partial extension of our results to the larger class of all graphs with a dominating target of bounded cardinality. Our time upper bounds in the paper are shown to be essentially optimal under plausible complexity assumptions
    corecore