405 research outputs found

    On the Power of Advice and Randomization for Online Bipartite Matching

    Get PDF
    While randomized online algorithms have access to a sequence of uniform random bits, deterministic online algorithms with advice have access to a sequence of advice bits, i.e., bits that are set by an all powerful oracle prior to the processing of the request sequence. Advice bits are at least as helpful as random bits, but how helpful are they? In this work, we investigate the power of advice bits and random bits for online maximum bipartite matching (MBM). The well-known Karp-Vazirani-Vazirani algorithm is an optimal randomized (11e)(1-\frac{1}{e})-competitive algorithm for \textsc{MBM} that requires access to Θ(nlogn)\Theta(n \log n) uniform random bits. We show that Ω(log(1ϵ)n)\Omega(\log(\frac{1}{\epsilon}) n) advice bits are necessary and O(1ϵ5n)O(\frac{1}{\epsilon^5} n) sufficient in order to obtain a (1ϵ)(1-\epsilon)-competitive deterministic advice algorithm. Furthermore, for a large natural class of deterministic advice algorithms, we prove that Ω(logloglogn)\Omega(\log \log \log n) advice bits are required in order to improve on the 12\frac{1}{2}-competitiveness of the best deterministic online algorithm, while it is known that O(logn)O(\log n) bits are sufficient. Last, we give a randomized online algorithm that uses cnc n random bits, for integers c1c \ge 1, and a competitive ratio that approaches 11e1-\frac{1}{e} very quickly as cc is increasing. For example if c=10c = 10, then the difference between 11e1-\frac{1}{e} and the achieved competitive ratio is less than 0.00020.0002

    On the Power of Advice and Randomization for Online Bipartite Matching

    Get PDF

    Online graph coloring against a randomized adversary

    Get PDF
    Electronic version of an article published as Online graph coloring against a randomized adversary. "International journal of foundations of computer science", 1 Juny 2018, vol. 29, núm. 4, p. 551-569. DOI:10.1142/S0129054118410058 © 2018 copyright World Scientific Publishing Company. https://www.worldscientific.com/doi/abs/10.1142/S0129054118410058We consider an online model where an adversary constructs a set of 2s instances S instead of one single instance. The algorithm knows S and the adversary will choose one instance from S at random to present to the algorithm. We further focus on adversaries that construct sets of k-chromatic instances. In this setting, we provide upper and lower bounds on the competitive ratio for the online graph coloring problem as a function of the parameters in this model. Both bounds are linear in s and matching upper and lower bound are given for a specific set of algorithms that we call “minimalistic online algorithms”.Peer ReviewedPostprint (author's final draft

    On Conceptually Simple Algorithms for Variants of Online Bipartite Matching

    Full text link
    We present a series of results regarding conceptually simple algorithms for bipartite matching in various online and related models. We first consider a deterministic adversarial model. The best approximation ratio possible for a one-pass deterministic online algorithm is 1/21/2, which is achieved by any greedy algorithm. D\"urr et al. recently presented a 22-pass algorithm called Category-Advice that achieves approximation ratio 3/53/5. We extend their algorithm to multiple passes. We prove the exact approximation ratio for the kk-pass Category-Advice algorithm for all k1k \ge 1, and show that the approximation ratio converges to the inverse of the golden ratio 2/(1+5)0.6182/(1+\sqrt{5}) \approx 0.618 as kk goes to infinity. The convergence is extremely fast --- the 55-pass Category-Advice algorithm is already within 0.01%0.01\% of the inverse of the golden ratio. We then consider a natural greedy algorithm in the online stochastic IID model---MinDegree. This algorithm is an online version of a well-known and extensively studied offline algorithm MinGreedy. We show that MinDegree cannot achieve an approximation ratio better than 11/e1-1/e, which is guaranteed by any consistent greedy algorithm in the known IID model. Finally, following the work in Besser and Poloczek, we depart from an adversarial or stochastic ordering and investigate a natural randomized algorithm (MinRanking) in the priority model. Although the priority model allows the algorithm to choose the input ordering in a general but well defined way, this natural algorithm cannot obtain the approximation of the Ranking algorithm in the ROM model

    Online coloring problem with a randomized adversary and infinite advice

    Get PDF
    Online problems are those in which the instance is not given as a whole but by parts named requests. They arrise naturaly in computer science. Several examples are given such as ski rental problem, the server problem and the coloring problem. The performance of the online algorithms is analized in terms of the ratio between the cost of the algorithm and the cost of the optimal offline. This ratio is called the competitive ratio. Several models of online algorithms are described. They are deterministic algorithms, randomized algorithms and algorithms with advice. We present several upper and lower bounds for the competitive ratio in a particular case of the k-server problem. We review the known bounds for the coloring problem in the diferent models. We present a new model, the randomized adversary. For this model we present an upper bound and a restricted lower bound. Finally we conjecture an unrestricted lower bound and we present several approaches to the result

    Online coloring problem with a randomized adversary and infinite advice

    Get PDF
    Online problems are those in which the instance is not given as a whole but by parts named requests. They arrise naturaly in computer science. Several examples are given such as ski rental problem, the server problem and the coloring problem. The performance of the online algorithms is analized in terms of the ratio between the cost of the algorithm and the cost of the optimal offline. This ratio is called the competitive ratio. Several models of online algorithms are described. They are deterministic algorithms, randomized algorithms and algorithms with advice. We present several upper and lower bounds for the competitive ratio in a particular case of the k-server problem. We review the known bounds for the coloring problem in the diferent models. We present a new model, the randomized adversary. For this model we present an upper bound and a restricted lower bound. Finally we conjecture an unrestricted lower bound and we present several approaches to the result

    Improved approximation guarantees for weighted matching in the semi-streaming model

    Get PDF
    We study the maximum weight matching problem in the semi-streaming model, and improve on the currently best one-pass algorithm due to Zelke (Proc. of STACS2008, pages 669-680) by devising a deterministic approach whose performance guarantee is 4.91+epsilon. In addition, we study preemptive online algorithms, a sub-class of one-pass algorithms where we are only allowed to maintain a feasible matching in memory at any point in time. All known results prior to Zelke's belong to this sub-class. We provide a lower bound of 4.967 on the competitive ratio of any such deterministic algorithm, and hence show that future improvements will have to store in memory a set of edges which is not necessarily a feasible matching

    Online matching in regular bipartite graphs

    Get PDF
    In an online problem, the input is revealed one piece at a time. In every time step, the online algorithm has to produce a part of the output, based on the partial knowledge of the input. Such decisions are irrevocable, and thus online algorithms usually lead to nonoptimal solutions. The impact of the partial knowledge depends strongly on the problem. If the algorithm is allowed to read binary information about the future, the amount of bits read that allow the algorithm to solve the problem optimally is the socalled advice complexity. The quality of an online algorithm is measured by its competitive ratio, which compares its performance to that of an optimal offline algorithm. In this paper we study online bipartite matchings focusing on the particular case of bipartite matchings in regular graphs. We give tight upper and lower bounds on the competitive ratio of the online deterministic bipartite matching problem. The competitive ratio turns out to be asymptotically equal to the known randomized competitive ratio. Afterwards, we present an upper and lower bound for the advice complexity of the online deterministic bipartite matching problem.Postprint (author's final draft
    corecore