51 research outputs found

    Goal recognition and deception in path-planning

    Get PDF
    This thesis argues that investigation of goal recognition and deception in the much studied and well-understood context of path-planning reveals nuances to both problems that have previously gone unnoticed. Contemporary goal recognition systems rely on examination of multiple observations to calculate a probability distribution across goals. The first part of this thesis demonstrates that a distribution with identical rankings to current stateof-the-art can be achieved without any observations apart from a known starting point (such as a door or gate) and where the agent is now. It also presents a closed formula to calculate a radius around any goal of interest within which that goal is guaranteed to be the most probable, without having to calculate any actual probability values. In terms of deception, traditionally there are two strategies: dissimulation (hiding the true) and simulation (showing the false). The second part of this thesis shows that current state-of-the-art goal recognition systems do not cope well with dissimulation that does its work by ‘dazzling’ (i.e., obfuscating with hugely suboptimal plans). It presents an alternative, self-modulating formula that modifies its output when it encounters suboptimality, seeming to ‘know that it does not know’ instead of ‘keep changing its mind’. Deception is often regarded as a ‘yes, no’ proposition (either the target is deceived or they are not). Furthermore, intuitively, deceptive path-planning involves suboptimality and must, therefore, be expensive. This thesis, however, presents a model of deception for path-planning domains within which it is possible (a) to rank paths by their potential to deceive and (b) to generate deceptive paths that are ‘optimally deceptive’ (i.e., deceptive to the maximum extent at the lowest cost)

    A Broad View on Robot Self-Defense: Rapid Scoping Review and Cultural Comparison

    Get PDF
    With power comes responsibility: as robots become more advanced and prevalent, the role they will play in human society becomes increasingly important. Given that violence is an important problem, the question emerges if robots could defend people, even if doing so might cause harm to someone. The current study explores the broad context of how people perceive the acceptability of such robot self-defense (RSD) in terms of (1) theory, via a rapid scoping review, and (2) public opinion in two countries. As a result, we summarize and discuss: increasing usage of robots capable of wielding force by law enforcement and military, negativity toward robots, ethics and legal questions (including differences to the well-known trolley problem), control in the presence of potential failures, and practical capabilities that such robots might require. Furthermore, a survey was conducted, indicating that participants accepted the idea of RSD, with some cultural differences. We believe that, while substantial obstacles will need to be overcome to realize RSD, society stands to gain from exploring its possibilities over the longer term, toward supporting human well-being in difficult times

    Coevolutionary algorithms for the optimization of strategies for red teaming applications

    Get PDF
    Red teaming (RT) is a process that assists an organization in finding vulnerabilities in a system whereby the organization itself takes on the role of an “attacker” to test the system. It is used in various domains including military operations. Traditionally, it is a manual process with some obvious weaknesses: it is expensive, time-consuming, and limited from the perspective of humans “thinking inside the box”. Automated RT is an approach that has the potential to overcome these weaknesses. In this approach both the red team (enemy forces) and blue team (friendly forces) are modelled as intelligent agents in a multi-agent system and the idea is to run many computer simulations, pitting the plan of the red team against the plan of blue team. This research project investigated techniques that can support automated red teaming by conducting a systematic study involving a genetic algorithm (GA), a basic coevolutionary algorithm and three variants of the coevolutionary algorithm. An initial pilot study involving the GA showed some limitations, as GAs only support the optimization of a single population at a time against a fixed strategy. However, in red teaming it is not sufficient to consider just one, or even a few, opponent‟s strategies as, in reality, each team needs to adjust their strategy to account for different strategies that competing teams may utilize at different points. Coevolutionary algorithms (CEAs) were identified as suitable algorithms which were capable of optimizing two teams simultaneously for red teaming. The subsequent investigation of CEAs examined their performance in addressing the characteristics of red teaming problems, such as intransitivity relationships and multimodality, before employing them to optimize two red teaming scenarios. A number of measures were used to evaluate the performance of CEAs and in terms of multimodality, this study introduced a novel n-peak problem and a new performance measure based on the Circular Earth Movers‟ Distance. Results from the investigations involving an intransitive number problem, multimodal problem and two red teaming scenarios showed that in terms of the performance measures used, there is not a single algorithm that consistently outperforms the others across the four test problems. Applications of CEAs on the red teaming scenarios showed that all four variants produced interesting evolved strategies at the end of the optimization process, as well as providing evidence of the potential of CEAs in their future application in red teaming. The developed techniques can potentially be used for red teaming in military operations or analysis for protection of critical infrastructure. The benefits include the modelling of more realistic interactions between the teams, the ability to anticipate and to counteract potentially new types of attacks as well as providing a cost effective solution

    Foundations of Trusted Autonomy

    Get PDF
    Trusted Autonomy; Automation Technology; Autonomous Systems; Self-Governance; Trusted Autonomous Systems; Design of Algorithms and Methodologie

    Unmanned Aircraft Systems in the Cyber Domain

    Get PDF
    Unmanned Aircraft Systems are an integral part of the US national critical infrastructure. The authors have endeavored to bring a breadth and quality of information to the reader that is unparalleled in the unclassified sphere. This textbook will fully immerse and engage the reader / student in the cyber-security considerations of this rapidly emerging technology that we know as unmanned aircraft systems (UAS). The first edition topics covered National Airspace (NAS) policy issues, information security (INFOSEC), UAS vulnerabilities in key systems (Sense and Avoid / SCADA), navigation and collision avoidance systems, stealth design, intelligence, surveillance and reconnaissance (ISR) platforms; weapons systems security; electronic warfare considerations; data-links, jamming, operational vulnerabilities and still-emerging political scenarios that affect US military / commercial decisions. This second edition discusses state-of-the-art technology issues facing US UAS designers. It focuses on counter unmanned aircraft systems (C-UAS) – especially research designed to mitigate and terminate threats by SWARMS. Topics include high-altitude platforms (HAPS) for wireless communications; C-UAS and large scale threats; acoustic countermeasures against SWARMS and building an Identify Friend or Foe (IFF) acoustic library; updates to the legal / regulatory landscape; UAS proliferation along the Chinese New Silk Road Sea / Land routes; and ethics in this new age of autonomous systems and artificial intelligence (AI).https://newprairiepress.org/ebooks/1027/thumbnail.jp

    DRONE DELIVERY OF CBNRECy – DEW WEAPONS Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD)

    Get PDF
    Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD) is our sixth textbook in a series covering the world of UASs and UUVs. Our textbook takes on a whole new purview for UAS / CUAS/ UUV (drones) – how they can be used to deploy Weapons of Mass Destruction and Deception against CBRNE and civilian targets of opportunity. We are concerned with the future use of these inexpensive devices and their availability to maleficent actors. Our work suggests that UASs in air and underwater UUVs will be the future of military and civilian terrorist operations. UAS / UUVs can deliver a huge punch for a low investment and minimize human casualties.https://newprairiepress.org/ebooks/1046/thumbnail.jp

    Aprendizagem de coordenação em sistemas multi-agente

    Get PDF
    The ability for an agent to coordinate with others within a system is a valuable property in multi-agent systems. Agents either cooperate as a team to accomplish a common goal, or adapt to opponents to complete different goals without being exploited. Research has shown that learning multi-agent coordination is significantly more complex than learning policies in singleagent environments, and requires a variety of techniques to deal with the properties of a system where agents learn concurrently. This thesis aims to determine how can machine learning be used to achieve coordination within a multi-agent system. It asks what techniques can be used to tackle the increased complexity of such systems and their credit assignment challenges, how to achieve coordination, and how to use communication to improve the behavior of a team. Many algorithms for competitive environments are tabular-based, preventing their use with high-dimension or continuous state-spaces, and may be biased against specific equilibrium strategies. This thesis proposes multiple deep learning extensions for competitive environments, allowing algorithms to reach equilibrium strategies in complex and partially-observable environments, relying only on local information. A tabular algorithm is also extended with a new update rule that eliminates its bias against deterministic strategies. Current state-of-the-art approaches for cooperative environments rely on deep learning to handle the environment’s complexity and benefit from a centralized learning phase. Solutions that incorporate communication between agents often prevent agents from being executed in a distributed manner. This thesis proposes a multi-agent algorithm where agents learn communication protocols to compensate for local partial-observability, and remain independently executed. A centralized learning phase can incorporate additional environment information to increase the robustness and speed with which a team converges to successful policies. The algorithm outperforms current state-of-the-art approaches in a wide variety of multi-agent environments. A permutation invariant network architecture is also proposed to increase the scalability of the algorithm to large team sizes. Further research is needed to identify how can the techniques proposed in this thesis, for cooperative and competitive environments, be used in unison for mixed environments, and whether they are adequate for general artificial intelligence.A capacidade de um agente se coordenar com outros num sistema Ă© uma propriedade valiosa em sistemas multi-agente. Agentes cooperam como uma equipa para cumprir um objetivo comum, ou adaptam-se aos oponentes de forma a completar objetivos egoĂ­stas sem serem explorados. Investigação demonstra que aprender coordenação multi-agente Ă© significativamente mais complexo que aprender estratĂ©gias em ambientes com um Ășnico agente, e requer uma variedade de tĂ©cnicas para lidar com um ambiente onde agentes aprendem simultaneamente. Esta tese procura determinar como aprendizagem automĂĄtica pode ser usada para encontrar coordenação em sistemas multi-agente. O documento questiona que tĂ©cnicas podem ser usadas para enfrentar a superior complexidade destes sistemas e o seu desafio de atribuição de crĂ©dito, como aprender coordenação, e como usar comunicação para melhorar o comportamento duma equipa. MĂșltiplos algoritmos para ambientes competitivos sĂŁo tabulares, o que impede o seu uso com espaços de estado de alta-dimensĂŁo ou contĂ­nuos, e podem ter tendĂȘncias contra estratĂ©gias de equilĂ­brio especĂ­ficas. Esta tese propĂ”e mĂșltiplas extensĂ”es de aprendizagem profunda para ambientes competitivos, permitindo a algoritmos atingir estratĂ©gias de equilĂ­brio em ambientes complexos e parcialmente-observĂĄveis, com base em apenas informação local. Um algoritmo tabular Ă© tambĂ©m extendido com um novo critĂ©rio de atualização que elimina a sua tendĂȘncia contra estratĂ©gias determinĂ­sticas. Atuais soluçÔes de estado-da-arte para ambientes cooperativos tĂȘm base em aprendizagem profunda para lidar com a complexidade do ambiente, e beneficiam duma fase de aprendizagem centralizada. SoluçÔes que incorporam comunicação entre agentes frequentemente impedem os prĂłprios de ser executados de forma distribuĂ­da. Esta tese propĂ”e um algoritmo multi-agente onde os agentes aprendem protocolos de comunicação para compensarem por observabilidade parcial local, e continuam a ser executados de forma distribuĂ­da. Uma fase de aprendizagem centralizada pode incorporar informação adicional sobre ambiente para aumentar a robustez e velocidade com que uma equipa converge para estratĂ©gias bem-sucedidas. O algoritmo ultrapassa abordagens estado-da-arte atuais numa grande variedade de ambientes multi-agente. Uma arquitetura de rede invariante a permutaçÔes Ă© tambĂ©m proposta para aumentar a escalabilidade do algoritmo para grandes equipas. Mais pesquisa Ă© necessĂĄria para identificar como as tĂ©cnicas propostas nesta tese, para ambientes cooperativos e competitivos, podem ser usadas em conjunto para ambientes mistos, e averiguar se sĂŁo adequadas a inteligĂȘncia artificial geral.Apoio financeiro da FCT e do FSE no Ăąmbito do III Quadro ComunitĂĄrio de ApoioPrograma Doutoral em InformĂĄtic

    Counter Unmanned Aircraft Systems Technologies and Operations

    Get PDF
    As the quarter-century mark in the 21st Century nears, new aviation-related equipment has come to the forefront, both to help us and to haunt us. (Coutu, 2020) This is particularly the case with unmanned aerial vehicles (UAVs). These vehicles have grown in popularity and accessible to everyone. Of different shapes and sizes, they are widely available for purchase at relatively low prices. They have moved from the backyard recreation status to important tools for the military, intelligence agencies, and corporate organizations. New practical applications such as military equipment and weaponry are announced on a regular basis – globally. (Coutu, 2020) Every country seems to be announcing steps forward in this bludgeoning field. In our successful 2nd edition of Unmanned Aircraft Systems in the Cyber Domain: Protecting USA’s Advanced Air Assets (Nichols, et al., 2019), the authors addressed three factors influencing UAS phenomena. First, unmanned aircraft technology has seen an economic explosion in production, sales, testing, specialized designs, and friendly / hostile usages of deployed UAS / UAVs / Drones. There is a huge global growing market and entrepreneurs know it. Second, hostile use of UAS is on the forefront of DoD defense and offensive planners. They are especially concerned with SWARM behavior. Movies like “Angel has Fallen,” where drones in a SWARM use facial recognition technology to kill USSS agents protecting POTUS, have built the lore of UAS and brought the problem forefront to DHS. Third, UAS technology was exploding. UAS and Counter- UAS developments in navigation, weapons, surveillance, data transfer, fuel cells, stealth, weight distribution, tactics, GPS / GNSS elements, SCADA protections, privacy invasions, terrorist uses, specialized software, and security protocols has exploded. (Nichols, et al., 2019) Our team has followed / tracked joint ventures between military and corporate entities and specialized labs to build UAS countermeasures. As authors, we felt compelled to address at least the edge of some of the new C-UAS developments. It was clear that we would be lucky if we could cover a few of – the more interesting and priority technology updates – all in the UNCLASSIFIED and OPEN sphere. Counter Unmanned Aircraft Systems: Technologies and Operations is the companion textbook to our 2nd edition. The civilian market is interesting and entrepreneurial, but the military and intelligence markets are of concern because the US does NOT lead the pack in C-UAS technologies. China does. China continues to execute its UAS proliferation along the New Silk Road Sea / Land routes (NSRL). It has maintained a 7% growth in military spending each year to support its buildup. (Nichols, et al., 2019) [Chapter 21]. They continue to innovate and have recently improved a solution for UAS flight endurance issues with the development of advanced hydrogen fuel cell. (Nichols, et al., 2019) Reed and Trubetskoy presented a terrifying map of countries in the Middle East with armed drones and their manufacturing origin. Guess who? China. (A.B. Tabriski & Justin, 2018, December) Our C-UAS textbook has as its primary mission to educate and train resources who will enter the UAS / C-UAS field and trust it will act as a call to arms for military and DHS planners.https://newprairiepress.org/ebooks/1031/thumbnail.jp

    Proceedings of the 2004 ONR Decision-Support Workshop Series: Interoperability

    Get PDF
    In August of 1998 the Collaborative Agent Design Research Center (CADRC) of the California Polytechnic State University in San Luis Obispo (Cal Poly), approached Dr. Phillip Abraham of the Office of Naval Research (ONR) with the proposal for an annual workshop focusing on emerging concepts in decision-support systems for military applications. The proposal was considered timely by the ONR Logistics Program Office for at least two reasons. First, rapid advances in information systems technology over the past decade had produced distributed collaborative computer-assistance capabilities with profound potential for providing meaningful support to military decision makers. Indeed, some systems based on these new capabilities such as the Integrated Marine Multi-Agent Command and Control System (IMMACCS) and the Integrated Computerized Deployment System (ICODES) had already reached the field-testing and final product stages, respectively. Second, over the past two decades the US Navy and Marine Corps had been increasingly challenged by missions demanding the rapid deployment of forces into hostile or devastate dterritories with minimum or non-existent indigenous support capabilities. Under these conditions Marine Corps forces had to rely mostly, if not entirely, on sea-based support and sustainment operations. Particularly today, operational strategies such as Operational Maneuver From The Sea (OMFTS) and Sea To Objective Maneuver (STOM) are very much in need of intelligent, near real-time and adaptive decision-support tools to assist military commanders and their staff under conditions of rapid change and overwhelming data loads. In the light of these developments the Logistics Program Office of ONR considered it timely to provide an annual forum for the interchange of ideas, needs and concepts that would address the decision-support requirements and opportunities in combined Navy and Marine Corps sea-based warfare and humanitarian relief operations. The first ONR Workshop was held April 20-22, 1999 at the Embassy Suites Hotel in San Luis Obispo, California. It focused on advances in technology with particular emphasis on an emerging family of powerful computer-based tools, and concluded that the most able members of this family of tools appear to be computer-based agents that are capable of communicating within a virtual environment of the real world. From 2001 onward the venue of the Workshop moved from the West Coast to Washington, and in 2003 the sponsorship was taken over by ONR’s Littoral Combat/Power Projection (FNC) Program Office (Program Manager: Mr. Barry Blumenthal). Themes and keynote speakers of past Workshops have included: 1999: ‘Collaborative Decision Making Tools’ Vadm Jerry Tuttle (USN Ret.); LtGen Paul Van Riper (USMC Ret.);Radm Leland Kollmorgen (USN Ret.); and, Dr. Gary Klein (KleinAssociates) 2000: ‘The Human-Computer Partnership in Decision-Support’ Dr. Ronald DeMarco (Associate Technical Director, ONR); Radm CharlesMunns; Col Robert Schmidle; and, Col Ray Cole (USMC Ret.) 2001: ‘Continuing the Revolution in Military Affairs’ Mr. Andrew Marshall (Director, Office of Net Assessment, OSD); and,Radm Jay M. Cohen (Chief of Naval Research, ONR) 2002: ‘Transformation ... ’ Vadm Jerry Tuttle (USN Ret.); and, Steve Cooper (CIO, Office ofHomeland Security) 2003: ‘Developing the New Infostructure’ Richard P. Lee (Assistant Deputy Under Secretary, OSD); and, MichaelO’Neil (Boeing) 2004: ‘Interoperability’ MajGen Bradley M. Lott (USMC), Deputy Commanding General, Marine Corps Combat Development Command; Donald Diggs, Director, C2 Policy, OASD (NII
    • 

    corecore