70 research outputs found

    A direct sequence - code division multiple access/binary phase shift keying (DS-CDMA/BPSK) modem design

    Get PDF
    http://archive.org/details/directsequenceco00kocaLieutenant Junior Grade, Turkish NavyApproved for public release; distribution is unlimited

    A direct sequence - code division multiple access/differential phase-shift keying (DS-CDMA/DPSK) modem design

    Get PDF
    The development of a differential phase-shift keying (DPSK), direct sequence, spread spectrum modem is conducted for the purpose of creating a prototype design to be implemented in a multi-user environment. In this design, a maximal length sequence of 31 chips is used to spread the information data. The multi-user performance analysis is performed by using Bit Error Rate (BER) test equipment (1645 Hewlett Packard data error analyzer). A multi-user interference cancellation circuit for two users is introduced, and measurements are performed to show its effectiveness. The design itself encompasses the selection of components and demonstrates that the preliminary operational characteristics of a spread spectrum DPSK modem scheme for CDMA application can be achievedhttp://archive.org/details/directsequenceco00karaLieutenant Junior Grade, Turkish NavyApproved for public release; distribution is unlimited

    Application of bit-slice microprocessors to digital correlation in spread spectrum communication systems

    Get PDF
    This thesis describes the application of commercially available microprocessors and other VLSI devices to high-speed real-time digital correlation in spread spectrum and related communication applications. Spread spectrum communications are a wide-band secure communication system that generate a very broad spectral bandwidth signal that is therefore hard to detect in noise. They are capable of rejecting intentional or unintentional jamming, and are insensitive to the multipath and fading that affects conventional high frequency systems. The bandwidth of spread spectrum systems must be large to obtain a significant performance improvement. This means that the sequence rate must be fast and therefore very fast microprocessors will be required when they are used to perform spread spectrum correlation. Since multiplication cannot be performed efficiently by microprocessors considerable work, since 1974, has been published in the literature which is devoted to minimising the requirement of multiplications in digital correlation and other signal processing algorithms. These fast techniques are investigated and implemented using general-purpose microprocessors. The restricted-bandwidth problem in microprocessor-based digital correlator has been discussed. A new implementation is suggested which uses bit-slice devices to maintain the flexibility of microprocessor-based digital correlation without sacrificing speed. This microprocessor-based system has been found to be efficient in implementing the correlation process at the baseband in the digital domain as well as the post-correlation signal processing- demodulation, detection and tracking, especiaJIy for low rate signals. A charge coupled-device is used to obtain spectral density function. An all-digital technique which is programmable for any binary waveform and can be used for achieving initial acquisition and maintaining synchronisation in spread spectrum communications is described. Many of the practical implementation problems are discussed. The receiver performance, which is measured in terms of the acquisition time and the bit-error rate, is also presented and results are obtained which are close to those predicted in the system simulations

    Analog baseband circuits for WCDMA direct-conversion receivers

    Get PDF
    This thesis describes the design and implementation of analog baseband circuits for low-power single-chip WCDMA direct-conversion receivers. The reference radio system throughout the thesis is UTRA/FDD. The analog baseband circuit consists of two similar channels, which contain analog channel-select filters, programmable-gain amplifiers, and circuits that remove DC offsets. The direct-conversion architecture is described and the UTRA/FDD system characteristics are summarized. The UTRA/FDD specifications define the performance requirement for the whole receiver. Therefore, the specifications for the analog baseband circuit are obtained from the receiver requirements through calculations performed by hand. When the power dissipation of an UTRA/FDD direct-conversion receiver is minimized, the design parameters of an all-pole analog channel-select filter and the following Nyquist rate analog-to-digital converter must be considered simultaneously. In this thesis, it is shown that minimum power consumption is achieved with a fifth-order lowpass filter and a 15.36-MS/s Nyquist rate converter that has a 7- or 8-bit resolution. A fifth-order Chebyshev prototype with a passband ripple of 0.01 dB and a −3-dB frequency of 1.92-MHz is adopted in this thesis. The error-vector-magnitude can be significantly reduced by using a first-order 1.4-MHz allpass filter. The selected filter prototype fulfills all selectivity requirements in the analog domain. In this thesis, all the filter implementations use the opamp-RC technique to achieve insensitivity to parasitic capacitances and a high dynamic range. The adopted technique is analyzed in detail. The effect of the finite opamp unity-gain bandwidth on the filter frequency response can be compensated for by using passive methods. Compensation schemes that also track the process and temperature variations have been developed. The opamp-RC technique enables the implementation of low-voltage filters. The design and simulation results of a 1.5-V 2-MHz lowpass filter are discussed. The developed biasing scheme does not use any additional current to achieve the low-voltage operation, unlike the filter topology published previously elsewhere. Methods for removing DC offsets in UTRA/FDD direct-conversion receivers are presented. The minimum areas for cascaded AC couplings and DC-feedback loops are calculated. The distortion of the frequency response of a lowpass filter caused by a DC-feedback loop connected over the filter is calculated and a method for compensating for the distortion is developed. The time constant of an AC coupling can be increased using time-constant multipliers. This enables the implementation of AC couplings with a small silicon area. Novel time-constant multipliers suitable for systems that have a continuous reception, such as UTRA/FDD, are presented. The proposed time-constant multipliers only require one additional amplifier. In an UTRA/FDD direct-conversion receiver, the reception is continuous. In a low-power receiver, the programmable baseband gain must be changed during reception. This may produce large, slowly decaying transients that degrade the receiver performance. The thesis shows that AC-coupling networks and DC-feedback loops can be used to implement programmable-gain amplifiers, which do not produce significant transients when the gain is altered. The principles of operation, the design, and the practical implementation issues of these amplifiers are discussed. New PGA topologies suitable for continuously receiving systems have been developed. The behavior of these circuits in the presence of strong out-of-channel signals is analyzed. The interface between the downconversion mixers and the analog baseband circuit is discussed. The effect of the interface on the receiver noise figure and the trimming of mixer IIP2 are analyzed. The design and implementation of analog baseband circuits and channel-select filters for UTRA/FDD direct-conversion receivers are discussed in five application cases. The first case presents the analog baseband circuit for a chip-set receiver. A channel-select filter that has an improved dynamic range with a smaller supply current is presented next. The third and fifth application cases describe embedded analog baseband circuits for single-chip receivers. In the fifth case, the dual-mode analog baseband circuit of a quad-mode receiver designed for GSM900, DCS1800, PCS1900, and UTRA/FDD cellular systems is described. A new, highly linear low-power transconductor is presented in the fourth application case. The fourth application case also describes a channel-select filter. The filter achieves +99-dBV out-of-channel IIP2, +45-dBV out-of-channel IIP3 and 23-μVRMS input-referred noise with 2.6-mA current from a 2.7-V supply. In the fifth application case, a corresponding performance is achieved in UTRA/FDD mode. The out-of-channel IIP2 values of approximately +100 dBV achieved in this work are the best reported so far. This is also the case with the figure of merits for the analog channel-select filter and analog baseband circuit described in the fourth and fifth application cases, respectively. For equal power dissipation, bandwidth, and filter order, these circuits achieve approximately 10 dB and 15 dB higher spurious-free dynamic ranges, respectively, when compared to implementations that are published elsewhere and have the second best figure of merits.reviewe

    Capacity, coding and interference cancellation in multiuser multicarrier wireless communications systems

    Get PDF
    Multicarrier modulation and multiuser systems have generated a great deal of research during the last decade. Orthogonal Frequency Division Multiplexing (OFDM) is a multicarrier modulation generated with the inverse Discrete Fourier Transform, which has been adopted for standards in wireless and wire-line communications. Multiuser wireless systems using multicarrier modulation suffer from the effects of dispersive fading channels, which create multi-access, inter-symbol, and inter-carrier interference (MAI, ISI, ICI). Nevertheless, channel dispersion also provides diversity, which can be exploited and has the potential to increase robustness against fading. Multiuser multi-carrier systems can be implemented using Orthogonal Frequency Division Multiple Access (OFDMA), a flexible orthogonal multiplexing scheme that can implement time and frequency division multiplexing, and using multicarrier code division multiple access (MC-CDMA). Coding, interference cancellation, and resource sharing schemes to improve the performance of multiuser multicarrier systems on wireless channels were addressed in this dissertation. Performance of multiple access schemes applied to a downlink multiuser wireless system was studied from an information theory perspective and from a more practical perspective. For time, frequency, and code division, implemented using OFDMA and MC-CDMA, the system outage capacity region was calculated for a correlated fading channel. It was found that receiver complexity determines which scheme offers larger capacity regions, and that OFDMA results in a better compromise between complexity and performance than MC-CDMA. From the more practical perspective of bit error rate, the effects of channel coding and interleaving were investigated. Results in terms of coding bounds as well as simulation were obtained, showing that OFDMAbased orthogonal multiple access schemes are more sensitive to the effectiveness of the code to provide diversity than non-orthogonal, MC-CDMA-based schemes. While cellular multiuser schemes suffer mainly from MAI, OFDM-based broadcasting systems suffer from ICI, in particular when operating as a single frequency network (SFN). It was found that for SFN the performance of a conventional OFDM receiver rapidly degrades when transmitters have frequency synchronization errors. Several methods based on linear and decision-feedback ICI cancellation were proposed and evaluated, showing improved robustness against ICI. System function characterization of time-variant dispersive channels is important for understanding their effects on single carrier and multicarrier modulation. Using time-frequency duality it was shown that MC-CDMA and DS-CDMA are strictly dual on dispersive channels. This property was used to derive optimal matched filter structures, and to determine a criterion for the selection of spreading sequences for both DS and MC CDMA. The analysis of multiple antenna systems provided a unified framework for the study of DS-CDMA and MC-CDMA on time and frequency dispersive channels, which can also be used to compare their performance

    Obfuscating IEEE 802.15.4 communication using secret spreading codes

    Full text link

    Infrared ranging in multipath environments for indoor localization of mobile targets

    Get PDF
    Esta tesis aborda el problema de la medida de diferencias de distancia mediante señales ópticas afectadas por multicamino, aplicada a la localización de agentes móviles en espacios interiores. Los avances en robótica, entornos inteligentes y vehículos autónomos han creado un campo de aplicación específico para la localización en interiores, cuyos requerimientos de precisión (en el rango de los cm) son muy superiores a los demandados por las aplicaciones de localización orientadas a personas, en cuyo contexto se han desarrollado la mayor parte de las alternativas tecnológicas. La investigación con métodos de geometría proyectiva basados en cámaras y de multilateración basados en medida de distancia con señales de radiofrecuencia de banda ancha, de ultrasonido y ópticas han demostrado un rendimiento potencial adecuado para cubrir estos requerimientos. Sin embargo, todas estas alternativas, aún en fase de investigación, presentan dificultades que limitan su aplicación práctica. En el caso de los sistemas ópticos, escasamente estudiados en este contexto, los trabajos previos se han basado en medidas de diferencia de fase de llegada de señales infrarrojas moduladas sinusoidalmente en intensidad. Una infraestructura centralizada computa medidas diferenciales, entre receptores fijos, de la señal emitida desde el móvil a posicionar, y calcula la posición del móvil mediante trilateración hiperbólica a partir de éstas. Estas investigaciones demostraron que se pueden alcanzar precisiones de pocos centímetros; sin embargo, las interferencias por multicamino debidas a la reflexión de la señal óptica en superficies del entorno pueden degradar esta precisión hasta las decenas de centímetros dependiendo de las características del espacio. Así pues, el efecto del multicamino es actualmente la principal fuente de error en esta tecnología, y por tanto, la principal barrera a superar para su implementación en situaciones reales. En esta tesis se propone y analiza un sistema de medida con señales ópticas que permite obtener estimaciones de diferencias de distancia precisas reduciendo el efecto crítico del multicamino. El sistema propuesto introduce una modulación con secuencias de ruido pseudoaleatorio sobre la modulación sinusoidal típicamente usada para medida de fase por onda continua, y aprovecha las propiedades de ensanchamiento en frecuencia de estas secuencias para reducir el efecto del multicamino. El sistema, que realiza una doble estimación de tiempo y fase de llegada, está compuesto por una etapa de sincronización que posibilita la demodulación parcialmente coherente de la señal recibida, seguida de un medidor diferencial de fase sobre las componentes desensanchadas tras la demodulación. Las condiciones de multicamino óptico típicas en espacios interiores, con una componente de camino directo claramente dominante, permiten que el proceso de demodulación recupere más potencia del camino directo que del resto de contribuciones, reduciendo el efecto del multicamino en la estimación final. Los resultados obtenidos demuestran que la aplicación del método propuesto permitiría realizar posicionamiento a partir de señales ópticas con el rendimiento adecuando para aplicaciones de robótica y guiado de vehículos en espacios interiores; además, el progresivo aumento de la potencia y el ancho de banda de los dispositivos optoelectrónicos disponibles permite esperar un incremento considerable de las prestaciones de la propuesta en los próximos años

    Performance Evaluation of MC DS CDMA using Wireless Open Access Research Platform

    Get PDF
    The need for reliable wireless communication systems has become an issue of communication technology development in the modern era. Multi Carrier Direct Sequence Code Division Multiple Access (MC-DS-CDMA) communication system offers superiority in efficient use of frequency spectrum through multicarrier principle as well as good information security level through direct sequence principle. WARP (Wireless Open Access Research Platform) is one type of SDR (Software Defined Radio) technology that can be programmed to create a prototype wireless communication system, one for MC DS CDMA communication system. Implementation of MC DS CDMA communication system using WARP device aims to evaluate the performance of MC DS CDMA communication system and to know how many users are able to be served simultaneously at the time of downlink compared to SC DS CDMA. The measurement results showed that the performance of BER will increase along with the increase of distance between nodes. At a distance of 3 meters the BER performance for gain 20 is 0, whereas at a distance of 5 meters for the same gain the BER performance is 0.0011. BER performance is also inversely proportional to the level of transmit power, where the greater the level of transmit power, the smaller the BER performance. At a distance of 5 meters for the transmit power level 10 obtained BER value 0.0125 and for the level of transmit power 20 obtained value BER 0.0016. In addition, MC DS CDMA communication system is more suitable for multiuser communication than SC DS CDMA with proven BER curves that are still smooth linear for data transmission of 20 users. BER performance is also the same linear down to the increase of transmit power value and Eb/No
    • …
    corecore