2,511 research outputs found

    OPTIMAL AREA AND PERFORMANCE MAPPING OF K-LUT BASED FPGAS

    Get PDF
    FPGA circuits are increasingly used in many fields: for rapid prototyping of new products (including fast ASIC implementation), for logic emulation, for producing a small number of a device, or if a device should be reconfigurable in use (reconfigurable computing). Determining if an arbitrary, given wide, function can be implemented by a programmable logic block, unfortunately, it is generally, a very difficult problem. This problem is called the Boolean matching problem. This paper introduces a new implemented algorithm able to map, both for area and performance, combinational networks using k-LUT based FPGAs.k-LUT based FPGAs, combinational circuits, performance-driven mapping.

    Low Power Processor Architectures and Contemporary Techniques for Power Optimization ā€“ A Review

    Get PDF
    The technological evolution has increased the number of transistors for a given die area significantly and increased the switching speed from few MHz to GHz range. Such inversely proportional decline in size and boost in performance consequently demands shrinking of supply voltage and effective power dissipation in chips with millions of transistors. This has triggered substantial amount of research in power reduction techniques into almost every aspect of the chip and particularly the processor cores contained in the chip. This paper presents an overview of techniques for achieving the power efficiency mainly at the processor core level but also visits related domains such as buses and memories. There are various processor parameters and features such as supply voltage, clock frequency, cache and pipelining which can be optimized to reduce the power consumption of the processor. This paper discusses various ways in which these parameters can be optimized. Also, emerging power efficient processor architectures are overviewed and research activities are discussed which should help reader identify how these factors in a processor contribute to power consumption. Some of these concepts have been already established whereas others are still active research areas. Ā© 2009 ACADEMY PUBLISHER

    FPGA implementation of a frame delay

    Get PDF
    The objective of this thesis is to investigate the applicability of Field Programmable Gate Arrays (FPGAs) for frame delay implementation. FPGAs are programmable devices that can be directly configured by the end user without the use of an integrated circuit fabrication facility. They offer the designer the benefits of custom hardware, eliminating high development costs and manufacturing time. Frame delays are easier to realize using R/W memory where data is written into the memory and read out for each frame. FPGAs are used in a Quartus II environment as it is easy to perform frame delay implementation using schematic entry procedure. Since FPGAs use look-up tables as configurable logic blocks, they are considered as an appropriate choice for frame delay based designs

    Models for reducing power consumption in CPLD and FPGA devices

    Get PDF
    Usage of programmable logic devices PLD has increased in the latest years because of the ability to quickly implement complex types of electronic systems while reducing cost and time of synthesis. This technology enables dynamic reconfiguration of different applications according to specific requirements. Also, power consumption and its loss is becoming an increasingly important requirement in the design of systems for portable applications fed by batteries. Other factors to be taken into account in the consumption of power are elements that are used for manufacturing, packaging, and cooling systems. Power consumption must be taken into consideration especially for wireless applications where battery technologies provide power 20 W/h and voltage 1.2 volts. Despite improvements in battery technology, the development of methods for reducing power consumption plays a decisive role in portable applications. Therefore, modeling of power consumption has become a requirement with the highest impact in the performance of FPGA elements. Despite generated models of the different manufacturers of these elements, this article will appear comparisons of models based on experimental measurements performed on both CPLD and FPGA elements. Based on these models is selected to simulate a system that will be implemented in two elements and see how reduced power consumption, without affecting system performance. Experimental results show that FPGA elements have better performance and significantly reduce the power consumption

    Size, Speed, and Power Analysis for Application-Specific Integrated Circuits Using Synthesis

    Get PDF
    An application-specific integrated circuit (ASIC) must not only provide the required functionality at the desired speed but it must also be economical. In the past, minimizing the size of the ASIC was sufficient to accomplish this goal. Today it is increasingly necessary that the ASIC also achieve minimum power dissipation or an optimal combination of speed, size and power, especially in communication and portable electronic devices. The research reported in this thesis describes the implementation of a Huffman encoder and a finite impulse response (FIR) filter using a hardware description language (HDL) and the testing of the corresponding register transfer level (RTL) for functionality. The RTL was targeted for two different libraries, TSMC-0.18 CMOS and the Xilinx Virtex V1000EHQ240-6. The RTL was synthesized and optimized for different sizes, speeds, and power by using the Synopsys Design Compiler, FPGA Compiler II, and Mentor Graphics Spectrum. Cadence place and route tools optimized area, delay, and power of post-layout stages for TSMC-0.18. Xilinx place and route tools were used for the Virtex V1000EHQ240-6. The various ASICs were produced and compared over a range of speed, area, and power. i
    • ā€¦
    corecore