8,447 research outputs found

    On polynomially integrable Birkhoff billiards on surfaces of constant curvature

    Get PDF
    We present a solution of the algebraic version of Birkhoff Conjecture on integrable billiards. Namely we show that every polynomially integrable real bounded convex planar billiard with smooth boundary is an ellipse. We extend this result to billiards with piecewise-smooth and not necessarily convex boundary on arbitrary two-dimensional surface of constant curvature: plane, sphere, Lobachevsky (hyperbolic) plane; each of them being modeled as a plane or a (pseudo-) sphere in R3\mathbb R^3 equipped with appropriate quadratic form. Namely, we show that a billiard is polynomially integrable, if and only if its boundary is a union of confocal conical arcs and appropriate geodesic segments. We also present a complexification of these results. These are joint results of Mikhail Bialy, Andrey Mironov and the author. The proof is split into two parts. The first part is given by Bialy and Mironov in their two joint papers. They considered the tautological projection of the boundary to RP2\mathbb{RP}^2 and studied its orthogonal-polar dual curve, which is piecewise algebraic, by S.V.Bolotin's theorem. By their arguments and another Bolotin's theorem, it suffices to show that each non-linear complex irreducible component of the dual curve is a conic. They have proved that all its singularities and inflection points (if any) lie in the projectivized zero locus of the corresponding quadratic form on C3\mathbb C^3. The present paper provides the second part of the proof: we show that each above irreducible component is a conic and finish the solution of the Algebraic Birkhoff Conjecture in constant curvature.Comment: To appear in the Journal of the European Mathematical Society (JEMS), 69 pages, 2 figures. A shorter proof of Theorem 4.24. Minor precisions and misprint correction

    Periodicity of certain piecewise affine planar maps

    Get PDF
    We determine periodic and aperiodic points of certain piecewise affine maps in the Euclidean plane. Using these maps, we prove for λ{±1±52,±2,±3}\lambda\in\{\frac{\pm1\pm\sqrt5}2,\pm\sqrt2,\pm\sqrt3\} that all integer sequences (ak)kZ(a_k)_{k\in\mathbb Z} satisfying 0ak1+λak+ak+1<10\le a_{k-1}+\lambda a_k+a_{k+1}<1 are periodic

    Bifurcations of piecewise smooth flows:perspectives, methodologies and open problems

    Get PDF
    In this paper, the theory of bifurcations in piecewise smooth flows is critically surveyed. The focus is on results that hold in arbitrarily (but finitely) many dimensions, highlighting significant areas where a detailed understanding is presently lacking. The clearest results to date concern equilibria undergoing bifurcations at switching boundaries, and limit cycles undergoing grazing and sliding bifurcations. After discussing fundamental concepts, such as topological equivalence of two piecewise smooth systems, discontinuity-induced bifurcations are defined for equilibria and limit cycles. Conditions for equilibria to exist in n-dimensions are given, followed by the conditions under which they generically undergo codimension-one bifurcations. The extent of knowledge of their unfoldings is also summarized. Codimension-one bifurcations of limit cycles and boundary-intersection crossing are described together with techniques for their classification. Codimension-two bifurcations are discussed with suggestions for further study

    Aspects of Bifurcation Theory for Piecewise-Smooth, Continuous Systems

    Full text link
    Systems that are not smooth can undergo bifurcations that are forbidden in smooth systems. We review some of the phenomena that can occur for piecewise-smooth, continuous maps and flows when a fixed point or an equilibrium collides with a surface on which the system is not smooth. Much of our understanding of these cases relies on a reduction to piecewise linearity near the border-collision. We also review a number of codimension-two bifurcations in which nonlinearity is important.Comment: pdfLaTeX, 9 figure
    corecore