12,960 research outputs found

    Multimapper: Data Density Sensitive Topological Visualization

    Full text link
    Mapper is an algorithm that summarizes the topological information contained in a dataset and provides an insightful visualization. It takes as input a point cloud which is possibly high-dimensional, a filter function on it and an open cover on the range of the function. It returns the nerve simplicial complex of the pullback of the cover. Mapper can be considered a discrete approximation of the topological construct called Reeb space, as analysed in the 11-dimensional case by [Carriere et al.,2018]. Despite its success in obtaining insights in various fields such as in [Kamruzzaman et al., 2016], Mapper is an ad hoc technique requiring lots of parameter tuning. There is also no measure to quantify goodness of the resulting visualization, which often deviates from the Reeb space in practice. In this paper, we introduce a new cover selection scheme for data that reduces the obscuration of topological information at both the computation and visualisation steps. To achieve this, we replace global scale selection of cover with a scale selection scheme sensitive to local density of data points. We also propose a method to detect some deviations in Mapper from Reeb space via computation of persistence features on the Mapper graph.Comment: Accepted at ICDM

    Detecting Community Structure in Dynamic Social Networks Using the Concept of Leadership

    Full text link
    Detecting community structure in social networks is a fundamental problem empowering us to identify groups of actors with similar interests. There have been extensive works focusing on finding communities in static networks, however, in reality, due to dynamic nature of social networks, they are evolving continuously. Ignoring the dynamic aspect of social networks, neither allows us to capture evolutionary behavior of the network nor to predict the future status of individuals. Aside from being dynamic, another significant characteristic of real-world social networks is the presence of leaders, i.e. nodes with high degree centrality having a high attraction to absorb other members and hence to form a local community. In this paper, we devised an efficient method to incrementally detect communities in highly dynamic social networks using the intuitive idea of importance and persistence of community leaders over time. Our proposed method is able to find new communities based on the previous structure of the network without recomputing them from scratch. This unique feature, enables us to efficiently detect and track communities over time rapidly. Experimental results on the synthetic and real-world social networks demonstrate that our method is both effective and efficient in discovering communities in dynamic social networks
    • …
    corecore