16,198 research outputs found

    On the performance of web services, google cloud messaging and firebase cloud messaging

    Get PDF
    Smartphones and other connected devices rely on data services, such as Web Services (WS), Google Cloud Messaging (GCM) and Firebase Cloud Messaging (FCM), to share the information they collect or use. Traditionally, these services were classified according to the average number of bytes transmitted or their delivery time. However, when dealing with battery-operated devices, another important parameter to be taken into account is their power consumption. Furthermore, software designers and developers often do not consider the efficiency of a data communication system, but are simply concerned about ease-of-use and response time. In this paper, we compare FCM, GCM and two types of WS, namely Simple Object Access Protocol (SOAP) and REpresentational State Transfer (REST) WS in terms of delay, data efficiency, and power consumption. The final outcome is that RESTful WS outperforms all others, making GCM and FCM a viable alternative only when the amount of data to be transmitted is very limited, or when the mobile application requires the advanced services offered by FCM or GCM only. Keywords: Web Services, Google Cloud Messaging, Firebase Cloud Messaging, REST, SOA

    Every Cloud Has a Push Data Lining: Incorporating Cloud Services in a Context-Aware Application

    Get PDF
    We investigated context-awareness by utilising multiple sources of context in a mobile device setting. In our experiment we developed a system consisting of a mobile client, running on the Android platform, integrated with a cloud-based service. These components were integrated using pushmessaging technology.One of the key featureswas the automatic adaptation of smartphones in accordance with implicit user needs. The novelty of our approach consists in the use of multiple sources of context input to the system, which included the use of calendar data and web based user configuration tool, as well as that of an external, cloud-based, configuration file storing user interface preferences which, pushed at log-on time irrespective of access device, frees the user from having to manually configure its interface.The systemwas evaluated via two rounds of user evaluations (n = 50 users), the feedback of which was generally positive and demonstrated the viability of using cloud-based services to provide an enhanced context-aware user experience

    Context-aware and automatic configuration of mobile devices in cloud-enabled ubiquitous computing

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s00779-013-0698-3. Copyright @ Springer-Verlag London 2013.Context-sensitive (or aware) applications have, in recent years, moved from the realm of possibilities to that of ubiquity. One exciting research area that is still very much in the realm of possibilities is that of cloud computing, and in this paper, we present our work, which explores the overlap of these two research areas. Accordingly, this paper explores the notion of cross-source integration of cloud-based, context-aware information in ubiquitous computing through a developed prototypical solution. Moreover, the described solution incorporates remote and automatic configuration of Android smartphones and advances the research area of context-aware information by harvesting information from several sources to build a rich foundation on which algorithms for context-aware computation can be based. Evaluation results show the viability of integrating and tailoring contextual information to provide users with timely, relevant and adapted application behaviour and content

    Mobile Agent based Market Basket Analysis on Cloud

    Full text link
    This paper describes the design and development of a location-based mobile shopping application for bakery product shops. Whole application is deployed on cloud. The three-tier architecture consists of, front-end, middle-ware and back-end. The front-end level is a location-based mobile shopping application for android mobile devices, for purchasing bakery products of nearby places. Front-end level also displays association among the purchased products. The middle-ware level provides a web service to generate JSON (JavaScript Object Notation) output from the relational database. It exchanges information and data between mobile application and servers in cloud. The back-end level provides the Apache Tomcat Web server and MySQL database. The application also uses the Google Cloud Messaging for generating and sending notification of orders to shopkeeper.Comment: 6 pages, 7 figure

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape
    • …
    corecore