2 research outputs found

    Time-slot based architecture for power beam-assisted relay techniques in CR-WSNs with transceiver hardware inadequacies

    Get PDF
    Over the past two decades, numerous research projects have concentrated on cognitive radio wireless sensor networks (CR-WSNs) and their benefits. To tackle the problem of energy and spectrum shortfall in CR-WSNs, this research proposes an underpinning decode-&-forward (DF) relaying technique. Using the suggested time-slot architecture (TSA), this technique harvests energy from a multi-antenna power beam (PB) and delivers source information to the target utilizing energy-constrained secondary source and relay nodes. The study considers three proposed relay selection schemes: enhanced hybrid partial relay selection (E-HPRS), conventional opportunistic relay selection (C-ORS), and leading opportunistic relay selection (L-ORS). We present evidence for the sustainability of the suggested methods by examining the outage probability (OP) and throughput (TPT) under multiple primary users (PUs). These systems leverage time switching (TS) receiver design to increase end-to-end performance while taking into account the maximum interference constraint and transceiver hardware inadequacies. In order to assess the efficacy of the proposed methods, we derive the exact and asymptotic closed-form equations for OP and TPT & develop an understanding to learn how they affect the overall performance all across the Rayleigh fading channel. The results show that OP of the L-ORS protocol is 16% better than C-ORS and 75% better than E-HPRS in terms of transmitting SNR. The OP of L-ORS is 30% better than C-ORS and 55% better than E-HPRS in terms of hardware inadequacies at the destination. The L-ORS technique outperforms C-ORS and E-HPRS in terms of TPT by 4% and 11%, respectively

    Performance study of an underlay cognitive radio network in the presence of co-channel interference

    Get PDF
    PhD ThesisMassive innovation in all aspects of the wireless communication network has been witnessed over the last few decades. The demand for data throughput is continuously growing, as such, the current regulations for allocating frequency spectrum are not able to respond to this exponential growth. Cognitive radio (CR), has been proposed as a solution to this problem. One of the possible scenarios of the implementation of CR is underlay cognitive radio. In this thesis the performance of an underlay cognitive radio network (UCRN) in the presence of the co-channel interference (CCI) is assessed. Firstly, the impact of CCI on the dual-hop cooperative UCRN is investigated over Rayleigh fading channels. In order to do this, the exact outage probability (OP), average error probability (AEP) and the ergodic capacity (EC) are studied. In addition, simple and asymptotic expressions for the OP and AEP are derived. Furthermore, the optimal power allocation is investigated to enhance the network performance. Moreover, the performance of a multi-user scenario is studied by considering the opportunistic SNR-based selection technique. Secondly, the effect of both primary network interference and CCI on the dual-hop UCRN over Rayleigh fading channels are studied. The equivalent signal-to-interference-plus-noise ratio (SINR) for this network scenario is obtained by considering multi-antenna schemes at all receiver nodes. The different signal combinations at the receiver nodes are investigated and compared, such as selection combining (SC) and maximum ratio combining (MRC) techniques. Then, the equivalent probability density function (PDF) and cumulative distribution function (CDF) of the network’s equivalent SINR are derived and discussed. Furthermore, expressions for the exact OP, AEP, and EC are derived and reviewed. In addition, asymptotic OP expressions are obtained for different case scenarios to gain an insight into the network parameters. Thirdly, multiple-input multiple-output (MIMO) UCRN is investigated under the influence of primary transmitter interference and CCI over Rayleigh fading channels. The transmit antenna selection and maximum ratio combining (TAS/MRC) techniques are considered for examining the performance of the secondary network. At first the equivalent SINR for the system is derived, then the exact and approximate expressions for the OP are derived and discussed. Fourthly, considering Nakagami-m fading channels, the performance of the UCRN is thoroughly studied with the consideration of the impact of primary network interference and CCI. The equivalent SINR for the secondary system is derived. Then, the system equivalent PDF and CDF are derived and discussed. Furthermore, the OP and AEP performances are investigated. Finally, for the cases mentioned above, numerical examples in conjunction with MatLab Monte Carlo simulations are provided to validate the derived results. The results show that CCI is one of the factors that severely reduces the UCRN performance. This can be more observable when the CCI power increases linearly with the transmission power of the secondary transmitter nodes. Furthermore, it was found that in a multi-user scenario the opportunistic SNR-based selection technique consideration can improve the performance of the network. Moreover, adaptive power allocation is found to give better results than equal power allocation. In addition, cooperative communication can be considered to be an effective way to combat the impact of transmission power limitation of the secondary network and interference power constraint. The multi-antenna schemes are another important consideration for enhancing the overall performance. In fact, despite the interference from the CCI and primary user sources, the multi-antennas scheme does not lose its advantage in the UCRN performance improvementHigher Committee for Education Development in Iraq (HCED). I am also grateful to the Ministry of Transportation and Communication, Kurdistan Regional Government-Iraq
    corecore