77 research outputs found

    Performance of Relaying Protocols

    Get PDF
    In wireless systems, cooperative diversity and relaying can exploit the benefit of spatial diversity and combat heavy pathloss without requiring multiple antennas at the receivers and transmitters. For practical networks, the use of relays is motivated by the need for simple, inexpensive terminals with limited power and a single antenna. The motivation for this thesis is to study and propose practical relaying protocols that can reduce the power consumption and ameliorate the performance with minimum additional complexity. Based on a dual-hop communication model, we exploit two upper bounds for the end-to-end SNR. These bounds further inspire us to propose new relaying protocols for wireless communication systems. We examine the case of a single user and relay under Rayleigh and Nakagami-m fading conditions. Based on the general upper bound, a new protocol is introduced: Clipped gain. This protocol makes it possible to save the transmit power by stopping the transmission when the quality of the first hop leads to an outage. We consider also user selection and user scheduling for dual-hop communication with multiple users and relays over a Rayleigh fading channel. We introduce new scheduling protocols based on one-bit feedback information. To the best of our knowledge, most of the available literature uses full channel state information to perform user selection and user scheduling. Interestingly, our protocols based on one bit feedback greatly improve the system performance while adding less additional complexity. To carry out rigorous comparison, close-form expressions are derived and analytical results used to assess the outage probability performance

    Hybrid turbo FEC/ARQ systems and distributed space-time coding for cooperative transmission

    Get PDF
    Cooperative transmission can be seen as a "virtual" MIMO system, where the multiple transmit antennas are in fact implemented distributed by the antennas both at the source and the relay terminal. Depending on the system design, diversity/multiplexing gains are achievable. This design involves the definition of the type of retransmission (incremental redundancy, repetition coding), the design of the distributed space-time codes, the error correcting scheme, the operation of the relay (decode&forward or amplify&forward) and the number of antennas at each terminal. Proposed schemes are evaluated in different conditions in combination with forward error correcting codes (FEC), both for linear and near-optimum (sphere decoder) receivers, for its possible implementation in downlink high speed packet services of cellular networks. Results show the benefits of coded cooperation over direct transmission in terms of increased throughput. It is shown that multiplexing gains are observed even if the mobile station features a single antenna, provided that cell wide reuse of the relay radio resource is possible

    Cooperative Diversity and Partner Selection in Wireless Networks

    Get PDF
    Next generation wireless communication systems are expected to provide a variety of services including voice, data and video. The rapidly growing demand for these services needs high data rate wireless communication systems with reliability and high user capacity. Recently, it has been shown that reliability and achievable data rate of wireless communication systems increases dramatically by employing multiple transmit and receive antennas. Transmit diversity is a powerful technique for combating multipath fading in wireless communications. However, employing multiple antennas in a mobile terminal to achieve the transmit diversity in the uplink is not feasible due to the limited size of the mobile unit. In order to overcome this problem, a new mode of transmit diversity called cooperative diversity (CD) based on user cooperation, was proposed very recently. By user cooperation, it is meant that the sender transmits to the destination and copies to other users, called partners, for relaying to the destination. The antennas of the sender and the partners together form a multiple antenna situation. CD systems are immuned not only against small scale channel fading but also against large scale channel fading. On the other hand, CD systems are more sensitive to interuser (between sender and partner) transmission errors and user mobility. In this dissertation, we propose a bandwidth and power efficient CD system which could be accommodated with minimal modifications in the currently available direct or point-to-point communication systems. The proposed CD system is based on quadrature signaling (QS). With quadrature signaling, both sender’s and partners’ information symbols are transmitted simultaneously in his/her multiple access channels. It also reduces the synchronization as well as the interference problems that occur in the schemes reported in the literature. The performance of the proposed QS-CD system is analyzed at different layers. First, we study the bit error probability (BEP) of the QS-CD system for both fixed and adaptive relaying at the partner. It is shown from the BEP performance that the QS-CD system can achieve diversity order of two. Then, a cross-layer communication system is developed by combing the proposed QS-CD system at the physical layer and the truncated stop-and- wait automatic repeat request (ARQ) at the data link layer. The performance of the cross-layer system is analyzed and compared with existing schemes in the literature for performance metrics at the data link layer and upper layers, i.e., frame error rate, packet loss rate, average packet delay, throughput, etc. In addition, the studies show that the proposed QS-CD-ARQ system outperforms existing schemes when it has a good partner. In this respect, the proposed system is fully utilizing the communication channel and less complex in terms of implementation when compared with the existing systems. Since the partner selection gives significant impact on the performance of the CD systems, partner selection algorithms (PSAs) are extensively analyzed for both static and mobile user network. In this case, each individual user would like to take advantage of cooperation by choosing a suitable partner. The objective of an individual user may conflict with the objective of the network. In this regard, we would like to introduce a PSA which tries to balance both users and network objectives by taking user mobility into consideration. The proposed PSA referred to as worst link first (WLF), to choose the best partner in cooperative communication systems. The WLF algorithm gives priority to the worst link user to choose its partner and to maximize the energy gain of the radio cell. It is easy to implement not only in centralized networks but also in distributed networks with or without the global knowledge of users in the network. The proposed WLF matching algorithm, being less complex than the optimal maximum weighted (MW) matching and the heuristic based Greedy matching algorithms, yields performance characteristics close to those of MW matching algorithm and better than the Greedy matching algorithm in both static and mobile user networks. Furthermore, the proposed matching algorithm provides around 10dB energy gain with optimal power allocation over a non-cooperative system which is equivalent to prolonging the cell phone battery recharge time by about ten times

    Cooperative Diversity and Partner Selection in Wireless Networks

    Get PDF
    Next generation wireless communication systems are expected to provide a variety of services including voice, data and video. The rapidly growing demand for these services needs high data rate wireless communication systems with reliability and high user capacity. Recently, it has been shown that reliability and achievable data rate of wireless communication systems increases dramatically by employing multiple transmit and receive antennas. Transmit diversity is a powerful technique for combating multipath fading in wireless communications. However, employing multiple antennas in a mobile terminal to achieve the transmit diversity in the uplink is not feasible due to the limited size of the mobile unit. In order to overcome this problem, a new mode of transmit diversity called cooperative diversity (CD) based on user cooperation, was proposed very recently. By user cooperation, it is meant that the sender transmits to the destination and copies to other users, called partners, for relaying to the destination. The antennas of the sender and the partners together form a multiple antenna situation. CD systems are immuned not only against small scale channel fading but also against large scale channel fading. On the other hand, CD systems are more sensitive to interuser (between sender and partner) transmission errors and user mobility. In this dissertation, we propose a bandwidth and power efficient CD system which could be accommodated with minimal modifications in the currently available direct or point-to-point communication systems. The proposed CD system is based on quadrature signaling (QS). With quadrature signaling, both sender’s and partners’ information symbols are transmitted simultaneously in his/her multiple access channels. It also reduces the synchronization as well as the interference problems that occur in the schemes reported in the literature. The performance of the proposed QS-CD system is analyzed at different layers. First, we study the bit error probability (BEP) of the QS-CD system for both fixed and adaptive relaying at the partner. It is shown from the BEP performance that the QS-CD system can achieve diversity order of two. Then, a cross-layer communication system is developed by combing the proposed QS-CD system at the physical layer and the truncated stop-and- wait automatic repeat request (ARQ) at the data link layer. The performance of the cross-layer system is analyzed and compared with existing schemes in the literature for performance metrics at the data link layer and upper layers, i.e., frame error rate, packet loss rate, average packet delay, throughput, etc. In addition, the studies show that the proposed QS-CD-ARQ system outperforms existing schemes when it has a good partner. In this respect, the proposed system is fully utilizing the communication channel and less complex in terms of implementation when compared with the existing systems. Since the partner selection gives significant impact on the performance of the CD systems, partner selection algorithms (PSAs) are extensively analyzed for both static and mobile user network. In this case, each individual user would like to take advantage of cooperation by choosing a suitable partner. The objective of an individual user may conflict with the objective of the network. In this regard, we would like to introduce a PSA which tries to balance both users and network objectives by taking user mobility into consideration. The proposed PSA referred to as worst link first (WLF), to choose the best partner in cooperative communication systems. The WLF algorithm gives priority to the worst link user to choose its partner and to maximize the energy gain of the radio cell. It is easy to implement not only in centralized networks but also in distributed networks with or without the global knowledge of users in the network. The proposed WLF matching algorithm, being less complex than the optimal maximum weighted (MW) matching and the heuristic based Greedy matching algorithms, yields performance characteristics close to those of MW matching algorithm and better than the Greedy matching algorithm in both static and mobile user networks. Furthermore, the proposed matching algorithm provides around 10dB energy gain with optimal power allocation over a non-cooperative system which is equivalent to prolonging the cell phone battery recharge time by about ten times

    Power minimization in wireless systems with superposition coding.

    Get PDF
    Zheng, Xiaoting.Thesis (M.Phil.)--Chinese University of Hong Kong, 2008.Includes bibliographical references (p. 64-69).Abstracts in English and Chinese.Abstract --- p.iAcknowledgement --- p.iiiChapter 1 --- Introduction --- p.1Chapter 1.1 --- Rayleigh Fading --- p.1Chapter 1.2 --- Transmission Schemes --- p.2Chapter 1.2.1 --- Frequency Division Multiple Access(FDMA) --- p.2Chapter 1.2.2 --- Time Division Multiple Access(TDMA) --- p.3Chapter 1.2.3 --- Code Division Multiple Access(CDMA) --- p.5Chapter 1.2.4 --- The Broadcast Channel --- p.5Chapter 1.3 --- Cooperative Transmissions --- p.9Chapter 1.3.1 --- Relaying Protocols --- p.10Chapter 1.4 --- Outline of Thesis --- p.12Chapter 2 --- Background Study --- p.13Chapter 2.1 --- Superposition Coding --- p.13Chapter 2.2 --- Cooperative Transmission --- p.15Chapter 2.2.1 --- Single Source Single Destination --- p.15Chapter 2.2.2 --- Multiple Sources Single Destination --- p.16Chapter 2.2.3 --- Single Source Multiple Destinations --- p.17Chapter 2.2.4 --- Multiple Sources Multiple Destinations --- p.17Chapter 2.3 --- Power Minimization --- p.18Chapter 2.3.1 --- Power Minimization in Code-Multiplexing System --- p.19Chapter 2.3.2 --- Power Minimization in Frequency-multiplexing System --- p.19Chapter 2.3.3 --- Power Minimization in Time-Multiplexing System --- p.20Chapter 3 --- Sum Power Minimization with Superposition Coding --- p.21Chapter 3.1 --- System Model --- p.22Chapter 3.2 --- Superposition Coding Scheme --- p.22Chapter 3.2.1 --- Optimal Superposition Coding Scheme --- p.22Chapter 3.2.2 --- Sub-optimal Superposition Coding Scheme --- p.27Chapter 3.3 --- Performance Evaluation --- p.30Chapter 3.4 --- Assignment Examples for Superposition Coding Scheme --- p.33Chapter 4 --- Source-cooperated Transmission in a Wireless Cluster --- p.42Chapter 4.1 --- System Model --- p.42Chapter 4.2 --- Selection Protocol --- p.44Chapter 4.2.1 --- Protocol Description and Problem Formulation --- p.44Chapter 4.2.2 --- Distributed Selection Algorithm --- p.46Chapter 4.2.3 --- Low Rate Regime --- p.50Chapter 4.3 --- Simulation Results --- p.52Chapter 4.3.1 --- Simulation Configuration --- p.53Chapter 4.3.2 --- Cases with a Smaller Feasible Solution Set --- p.53Chapter 4.3.3 --- Cases with a Larger Feasible Solution Set --- p.56Chapter 5 --- Conclusion and Future Work --- p.61Chapter 5.1 --- Conclusion --- p.61Chapter 5.2 --- Future Work --- p.62Chapter 5.2.1 --- Fairness --- p.62Chapter 5.2.2 --- Distributed Algorithm --- p.63Chapter 5.2.3 --- Game Theory --- p.63Chapter 5.2.4 --- Distributed Information --- p.63Bibliography --- p.6

    Distributed Space-Time Message Relaying for Uncoded/Coded Wireless Cooperative Communications

    Get PDF
    During wireless communications, nodes can overhear other transmissions through the wireless medium, suggested by the broadcast nature of plane wave propagation, and may help to provide extra observations of the source signals to the destination. Modern research in wireless communications pays more attention to these extra observations which were formerly neglected within networks. Cooperative communication processes this abundant information existing at the surrounding nodes and retransmits towards the destination in various forms to create spatial and/or coding diversity, thereby to obtain higher throughput and reliability. The aim of this work is to design cooperative communication systems with distributed space-time block codes (DSTBC) in different relaying protocols and theoretically derive the BER performance for each scenario. The amplify-and-forward (AF) protocol is one of the most commonly used protocols at the relays. It has a low implementation complexity but with a drawback of amplifying the noise as well. We establish the derivation of the exact one-integral expression of the average BER performance of this system, folloby a novel approximation method based on the series expansion. An emerging technology, soft decode-and-forward (SDF), has been presented to combine the desired features of AF and DF: soft signal representation in AF and channel coding gain in DF. In the SDF protocol, after decoding, relays transmit the soft-information, which represents the reliability of symbols passed by the decoder, to the destination. Instead of keeping the source node idling when the relays transmit as in the traditional SDF system, we let the source transmit hard information and cooperate with the relays using DSTBC. By theoretically deriving the detection performance at the destination by either using or not using the DSTBC, we make comparisons among three SDF systems. Interesting results have been shown, together with Monte-Carlo simulations, to illustrate that our proposed one-relay and two-relay SDF & DSTBC systems outperform traditional soft relaying for most of the cases. Finally, these analytic results also provide a way to implement the optimal power allocation between the source and the relay or between relays, which is illustrated in the line model

    Técnicas com múltiplas antenas distribuídas para sistemas sem fios

    Get PDF
    Mestrado em Engenharia Electrónica e TelecomunicaçõesTransmissão cooperativa, em que uma fonte e um relay cooperam para enviar uma mensagem para o destino, pode proporcionar diversidade espacial contra o desvanecimento nas comunicações sem fios. O objectivo deste projecto é estudar a performance de um sistema de transmissão cooperativo com dois relays equipados com duas antenas, entre o transmissor e o utilizador. Considera-se que a estação base está equipada com duas antenas e o terminal móvel apenas com uma. O sistema cooperativo foi implementado de acordo com as especificações do LTE e avaliado em diversos cenários de propagação, considerando canais com diferentes Relação Sinal Ruído (SNR). Verificou-se que o desempenho do sistema proposto é melhor, quando comparado com o sistema não cooperativo, na maior parte dos cenários estudados.Cooperative transmission, in which a source and relay cooperate to sent a mensage to destination, can provide spatial diversity against fading in wirless telecomunications. The goal of this project is to study the perfomance of a cooperative tranmition systems with two relays equiped with two antennas, between transmitter and user. It is considered that the base station is equipped with two antennas and the mobile terminal with only one. The cooperative system was implemented according to the specifications of the LTE and evaluated at several propagation scenarios, considering channels with diferents Signal to Noise Ratio (SNR). It was found that the perfomance of the proposed system is better when compared with the non-cooperative ones, in most scenarios considered.CODIV/FP7-ICT-200

    Distributed Coding and Modulation for 2-hop Communication via Relays

    Get PDF
    The past few decades have seen tremendous growth in the field of wireless communication systems. At this juncture, just before the advent of the 4th Generation of mobile standards, the question asked is how to improve the system in terms of coverage, capacity and reliability for the cell-edge users in a cellular network. Providing answers to this question could result in a significant improvement in the average throughput of the cell. The main purpose of the thesis work is therefore to implement Cooperative Communication via Distributed System of Relays. This concept is derived from the combination of relaying technology and multiple antenna techniques used in MIMO systems. During this thesis work, two transmit diversity schemes: the Delay Diversity Scheme and the Distributed Alamouti Scheme are developed on a 3GPP LTE compliant platform described as the OpenAir Interface. The ultimate objective is basically to improve the system performance by exploiting macro-diversity gains obtained as a result of these schemes. In the process of this development, numerous challenging tasks are provided with efficient solutions and have been implemented. Moreover, the last but the most crucial task of the thesis is to develop an entirely new HARQ protocol for a distributed system of relays. The work has been carried out at Eurecom, France as an initial step to implement the aforementioned schemes on a real-time network
    • …
    corecore