59,114 research outputs found

    Resource Allocation for Downlink Multi-Cell OFDMA Cognitive Radio Network Using Hungarian Method

    Get PDF
    This paper considers the problem of resource allocation for downlink part of an OFDM-based multi-cell cognitive radio network which consists of multiple secondary transmitters and receivers communicating simultaneously in the presence of multiple primary users. We present a new framework to maximize the total data throughput of secondary users by means of subchannel assignment, while ensuring interference leakage to PUs is below a threshold. In this framework, we first formulate the resource allocation problem as a nonlinear and non-convex optimization problem. Then we represent the problem as a maximum weighted matching in a bipartite graph and propose an iterative algorithm based on Hungarian method to solve it. The present contribution develops an efficient subchannel allocation algorithm that assigns subchannels to the secondary users without the perfect knowledge of fading channel gain between cognitive radio transmitter and primary receivers. The performance of the proposed subcarrier allocation algorithm is compared with a blind subchannel allocation as well as another scheme with the perfect knowledge of channel-state information. Simulation results reveal that a significant performance advantage can still be realized, even if the optimization at the secondary network is based on imperfect network information

    Improved Spectrum Mobility using Virtual Reservation in Collaborative Cognitive Radio Networks

    Full text link
    Cognitive radio technology would enable a set of secondary users (SU) to opportunistically use the spectrum licensed to a primary user (PU). On the appearance of this PU on a specific frequency band, any SU occupying this band should free it for PUs. Typically, SUs may collaborate to reduce the impact of cognitive users on the primary network and to improve the performance of the SUs. In this paper, we propose and analyze the performance of virtual reservation in collaborative cognitive networks. Virtual reservation is a novel link maintenance strategy that aims to maximize the throughput of the cognitive network through full spectrum utilization. Our performance evaluation shows significant improvements not only in the SUs blocking and forced termination probabilities but also in the throughput of cognitive users.Comment: 7 pages, 10 figures, IEEE ISCC 201

    Cognitive radio network in vehicular ad hoc network (VANET): a survey

    Get PDF
    Cognitive radio network and vehicular ad hoc network (VANET) are recent emerging concepts in wireless networking. Cognitive radio network obtains knowledge of its operational geographical environment to manage sharing of spectrum between primary and secondary users, while VANET shares emergency safety messages among vehicles to ensure safety of users on the road. Cognitive radio network is employed in VANET to ensure the efficient use of spectrum, as well as to support VANET’s deployment. Random increase and decrease of spectrum users, unpredictable nature of VANET, high mobility, varying interference, security, packet scheduling, and priority assignment are the challenges encountered in a typical cognitive VANET environment. This paper provides survey and critical analysis on different challenges of cognitive radio VANET, with discussion on the open issues, challenges, and performance metrics for different cognitive radio VANET applications

    Cognitive radio network in vehicular ad hoc network (VANET): a survey

    Get PDF
    Cognitive radio network and vehicular ad hoc network (VANET) are recent emerging concepts in wireless networking. Cognitive radio network obtains knowledge of its operational geographical environment to manage sharing of spectrum between primary and secondary users, while VANET shares emergency safety messages among vehicles to ensure safety of users on the road. Cognitive radio network is employed in VANET to ensure the efficient use of spectrum, as well as to support VANET’s deployment. Random increase and decrease of spectrum users, unpredictable nature of VANET, high mobility, varying interference, security, packet scheduling, and priority assignment are the challenges encountered in a typical cognitive VANET environment. This paper provides survey and critical analysis on different challenges of cognitive radio VANET, with discussion on the open issues, challenges, and performance metrics for different cognitive radio VANET applications

    Cognitive radio network in vehicular ad hoc network (VANET): a survey

    Get PDF
    Cognitive radio network and vehicular ad hoc network (VANET) are recent emerging concepts in wireless networking. Cognitive radio network obtains knowledge of its operational geographical environment to manage sharing of spectrum between primary and secondary users, while VANET shares emergency safety messages among vehicles to ensure safety of users on the road. Cognitive radio network is employed in VANET to ensure the efficient use of spectrum, as well as to support VANET’s deployment. Random increase and decrease of spectrum users, unpredictable nature of VANET, high mobility, varying interference, security, packet scheduling, and priority assignment are the challenges encountered in a typical cognitive VANET environment. This paper provides survey and critical analysis on different challenges of cognitive radio VANET, with discussion on the open issues, challenges, and performance metrics for different cognitive radio VANET applications

    SPECTRUM SHARING IN COGNITIVE RADIO NETWORKS WITH QUALITY OF SERVICE AWARENESS

    Get PDF
    The goal of this thesis is to study performance of cognitive radio networks in terms of total spectrum utilization and throughput of secondary networks under perfect and imperfect sensing for Additive White Gaussian Noise (AWGN) and fading channels. The effect of imperfect sensing was studied by applying non-collaborative and collaborative sensing techniques using energy detecting and square law combining techniques, respectively. Spectrum allocation for heterogeneous networks in cognitive radio networks was discussed and a new sharing algorithm that guarantee Quality of Service (QoS) for different secondary users’ applications was proposed. The throughput degradation of secondary users due to the activities of the primary users was explored by varying the arrival rate of the primary users in a given spectrum band. Computer simulation showed that increasing the primary user’s activity will increase the total spectrum utilization but decreases the secondary users’ throughput simultaneously. The effect of the received Signal to Noise Ratio (SNR) of the primary user on the cognitive radio network performance is studied in which, a high SNR of primary users led to a higher throughput of secondary network in AWGN channels compared to Nakagami fading channels. The effect of applying cooperative sensing is also presented in this thesis. As we increased the number of cooperating sensors, the network throughput increased which proves the advantage of applying cooperative sensing. A spectrum allocation algorithm for heterogeneous network model is developed to study the QoS assurance of secondary users in cognitive radio networks. The system performance of the heterogeneous network was investigated in terms of the total spectrum utilization. It is found that, higher number of secondary users, better channel’s condition and low required QoS of applications would increase the spectrum utilization significantly. vii In this thesis, the proposed allocation algorithm was applied to the heterogeneous cognitive radio model and its performance was compared to the First Come First Served (FCFS) algorithm in both AWGN and fading channels. The proposed algorithm provided a higher average SNR and spectrum utilization than FCFS algorithm and guaranteed the QoS requirement for applications of secondary users. The effect of imperfect sensing on the system performance was investigated, and it was shown that, as the probability of detection increases the total applications’ data rate increases significantly. The proposed algorithm guaranteed the QoS requirement for each application of secondary users. The effect of imperfect sensing on the system performance was investigated, and it was shown that, as the probability of detection increases the total data rate increases significantly

    Improved Learning Scheme for Cognitive Radio using Artificial Neural Networks

    Get PDF
    The future of wireless system is facing the problem of spectrum scarcity. Number of users is increasing rapidly but available spectrum is limited. The Cognitive Radio (CR) network technology can enable the unlicensed users to share the frequency spectrum with the licensed users on a dynamic basis without creating any interference to primary user. Whenever secondary user finds that primary user is not transmitting and channel is free then it uses channel opportunistically. In this paper cognitive radio with predictive capability using artificial neural network has been proposed. The advantage of such cognitive user is saving of time and energy for spectrum sensing. Proposed radio will sense only that channel which is predicted to be free and channel is selected on the basis of maximum vacant time. Performance has been evaluated in the term of mean square error. The results show that this learning capability can be embedded in secondary users for better performance of future wireless technologies. 
    corecore