139 research outputs found

    IEEE 802.11be Wi-Fi 7: Feature Summary and Performance Evaluation

    Full text link
    While the pace of commercial scale application of Wi-Fi 6 accelerates, the IEEE 802.11 Working Group is about to complete the development of a new amendment standard IEEE 802.11be -- Extremely High Throughput (EHT), also known as Wi-Fi 7, which can be used to meet the demand for the throughput of 4K/8K videos up to tens of Gbps and low-latency video applications such as virtual reality (VR) and augmented reality (AR). Wi-Fi 7 not only scales Wi-Fi 6 with doubled bandwidth, but also supports real-time applications, which brings revolutionary changes to Wi-Fi. In this article, we start by introducing the main objectives and timeline of Wi-Fi 7 and then list the latest key techniques which promote the performance improvement of Wi-Fi 7. Finally, we validate the most critical objectives of Wi-Fi 7 -- the potential up to 30 Gbps throughput and lower latency. System-level simulation results suggest that by combining the new techniques, Wi-Fi 7 achieves 30 Gbps throughput and lower latency than Wi-Fi 6.Comment: 6 pages, 4 figure

    Plastic Optical Fibers as Passive Optical Front-Ends for Visible Light Communication

    Get PDF

    Plastic Optical Fibers as Passive Optical Front-Ends for Visible Light Communication

    Get PDF

    An optimization of network performance in IEEE 802.11ax dense networks

    Get PDF
    The paper focuses on the optimization of IEEE 802.11ax dense networks. The results were obtained with the use of the NS-3 simulator. Various network topologies were analyzed and compared. The advantage of using MSDU and MPDU aggregations in a dense network environment was shown. The process of improving the network performance for changes in the transmitter power value, CCA Threshold, and antenna gain was presented. The positive influence of BSS coloring mechanism on overal network efficiency was revealed. The influence of receiver sensitivity on network performance was determined

    Five Facets of 6G: Research Challenges and Opportunities

    Full text link
    Whilst the fifth-generation (5G) systems are being rolled out across the globe, researchers have turned their attention to the exploration of radical next-generation solutions. At this early evolutionary stage we survey five main research facets of this field, namely {\em Facet~1: next-generation architectures, spectrum and services, Facet~2: next-generation networking, Facet~3: Internet of Things (IoT), Facet~4: wireless positioning and sensing, as well as Facet~5: applications of deep learning in 6G networks.} In this paper, we have provided a critical appraisal of the literature of promising techniques ranging from the associated architectures, networking, applications as well as designs. We have portrayed a plethora of heterogeneous architectures relying on cooperative hybrid networks supported by diverse access and transmission mechanisms. The vulnerabilities of these techniques are also addressed and carefully considered for highlighting the most of promising future research directions. Additionally, we have listed a rich suite of learning-driven optimization techniques. We conclude by observing the evolutionary paradigm-shift that has taken place from pure single-component bandwidth-efficiency, power-efficiency or delay-optimization towards multi-component designs, as exemplified by the twin-component ultra-reliable low-latency mode of the 5G system. We advocate a further evolutionary step towards multi-component Pareto optimization, which requires the exploration of the entire Pareto front of all optiomal solutions, where none of the components of the objective function may be improved without degrading at least one of the other components

    Experimental Study on Real-Time Wireless Networks for Motion Control of Manipulator and Mobile Platform in Industrial Robotics

    Get PDF
    The integration of ICT with manufacturing technologies is a key step towards intelligent manufacturing. The goal is to investigate some industrial application scenarios and evaluate the performance of selected wireless technologies. A recently standardized industrial wireless technology, WIA-FA, has shown good performance in practical deployments. Two experimental applications are considered: path planning testing with different wireless technologies and CANbus bridging with WIA-FA.openEmbargo temporaneo per motivi di segretezza e/o di proprietà dei risultati e informazioni di enti esterni o aziende private che hanno partecipato alla realizzazione del lavoro di ricerca relativo alla tes

    An analysis of BSS coloring mechanism in IEEE 802.11ax dense networks

    Get PDF
    The paper presents an analysis of BSS coloring scheme defined in IEEE 802.11ax standard. The efficiency of dense networks for different scenarios was analyzed and compared. This analysis covers various topologies and work configurations through the use of multiple parameters of the PHY and MAC layers. A positive impact of the coloring mechanism on the QoS was observed. The study also analyzed the impact of the RTS/CTS mechanism on the obtained network performance and adequate prioritization of various traffic classes. It was shown that the proper selection of the coloring mechanism parameters in the IEEE 802.11ax standard has a strong impact on QoS and the performance of dense networks

    Medium access control protocol design for wireless communications and networks review

    Get PDF
    Medium access control (MAC) protocol design plays a crucial role to increase the performance of wireless communications and networks. The channel access mechanism is provided by MAC layer to share the medium by multiple stations. Different types of wireless networks have different design requirements such as throughput, delay, power consumption, fairness, reliability, and network density, therefore, MAC protocol for these networks must satisfy their requirements. In this work, we proposed two multiplexing methods for modern wireless networks: Massive multiple-input-multiple-output (MIMO) and power domain non-orthogonal multiple access (PD-NOMA). The first research method namely Massive MIMO uses a massive number of antenna elements to improve both spectral efficiency and energy efficiency. On the other hand, the second research method (PD-NOMA) allows multiple non-orthogonal signals to share the same orthogonal resources by allocating different power level for each station. PD-NOMA has a better spectral efficiency over the orthogonal multiple access methods. A review of previous works regarding the MAC design for different wireless networks is classified based on different categories. The main contribution of this research work is to show the importance of the MAC design with added optimal functionalities to improve the spectral and energy efficiencies of the wireless networks
    corecore