61 research outputs found

    Towards multiprogrammed GPUs

    Get PDF
    Programmable Graphics Processing Units (GPUs) have recently become the most pervasitheve massively parallel processors. They have come a long way, from fixed function ASICs designed to accelerate graphics tasks to a programmable architecture that can also execute general-purpose computations. Because of their performance and efficiency, an increasing amount of software is relying on them to accelerate data parallel and computationally intensive sections of code. They have earned a place in many systems, from low power mobile devices to the biggest data centers in the world. However, GPUs are still plagued by the fact that they essentially have no multiprogramming support, resulting in low system performance if the GPU is shared among multiple programs. In this dissertation we set to provide the rich GPU multiprogramming support by improving the multitasking capabilities and increasing the virtual memory functionality and performance. The main issue hindering the multitasking support in GPUs is the nonpreemptive execution of GPU kernels. Here we propose two preemption mechanisms with dierent design philosophies, that can be used by a scheduler to preempt execution on GPU cores and make room for some other process. We also argue for the spatial sharing of the GPU and propose a concrete hardware scheduler implementation that dynamically partitions the GPU cores among running kernels, according to their set priorities. Opposing the assumptions made in the related work, we demonstrate that preemptive execution is feasible and the desired approach to GPU multitasking. We further show improved system fairness and responsiveness with our scheduling policy. We also pinpoint that at the core of the insufficient virtual memory support lies the exceptions handling mechanism used by modern GPUs. Currently, GPUs offload the actual exception handling work to the CPU, while the faulting instruction is stalled in the GPU core. This stall-on-fault model prevents some of the virtual memory features and optimizations and is especially harmful in multiprogrammed environments because it prevents context switching the GPU unless all the in-flight faults are resolved. In this disseritation, we propose three GPU core organizations with varying performance-complexity trade-off that get rid of the stall-on-fault execution and enable preemptible exceptions on the GPU (i.e., the faulting instruction can be squashed and restarted later). Building on this support, we implement two use cases and demonstrate their utility. One is a scheme that performs context switch of the faulted threads and tries to find some other useful work to do in the meantime, hiding the latency of the fault and improving the system performance. The other enables the fault handling code to run locally, on the GPU, instead of relying on the CPU offloading and show that the local fault handling can also improve performance.Las Unidades de Procesamiento de Gráficos Programables (GPU, por sus siglas en inglés) se han convertido recientemente en los procesadores masivamente paralelos más difundidos. Han recorrido un largo camino desde ASICs de función fija diseñados para acelerar tareas gráficas, hasta una arquitectura programable que también puede ejecutar cálculos de propósito general. Debido a su rendimiento y eficiencia, una cantidad creciente de software se basa en ellas para acelerar las secciones de código computacionalmente intensivas que disponen de paralelismo de datos. Se han ganado un lugar en muchos sistemas, desde dispositivos móviles de baja potencia hasta los centros de datos más grandes del mundo. Sin embargo, las GPUs siguen plagadas por el hecho de que esencialmente no tienen soporte de multiprogramación, lo que resulta en un bajo rendimiento del sistema si la GPU se comparte entre múltiples programas. En esta disertación nos centramos en proporcionar soporte de multiprogramación para GPUs mediante la mejora de las capacidades de multitarea y del soporte de memoria virtual. El principal problema que dificulta el soporte multitarea en las GPUs es la ejecución no apropiativa de los núcleos de la GPU. Proponemos dos mecanismos de apropiación con diferentes filosofías de diseño, que pueden ser utilizados por un planificador para apropiarse de los núcleos de la GPU y asignarlos a otros procesos. También abogamos por la división espacial de la GPU y proponemos una implementación concreta de un planificador hardware que divide dinámicamente los núcleos de la GPU entre los kernels en ejecución, de acuerdo con sus prioridades establecidas. Oponiéndose a las suposiciones hechas por otros en trabajos relacionados, demostramos que la ejecución apropiativa es factible y el enfoque deseado para la multitarea en GPUs. Además, mostramos una mayor equidad y capacidad de respuesta del sistema con nuestra política de asignación de núcleos de la GPU. También señalamos que la causa principal del insuficiente soporte de la memoria virtual en las GPUs es el mecanismo de manejo de excepciones utilizado por las GPUs modernas. En la actualidad, las GPUs descargan el manejo de las excepciones a la CPU, mientras que la instrucción que causo la fallada se encuentra esperando en el núcleo de la GPU. Este modelo de bloqueo en fallada impide algunas de las funciones y optimizaciones de la memoria virtual y es especialmente perjudicial en entornos multiprogramados porque evita el cambio de contexto de la GPU a menos que se resuelvan todas las fallas pendientes. En esta disertación, proponemos tres implementaciones del pipeline de los núcleos de la GPU que ofrecen distintos balances de rendimiento-complejidad y permiten la apropiación del núcleo aunque haya excepciones pendientes (es decir, la instrucción que produjo la fallada puede ser reiniciada más tarde). Basándonos en esta nueva funcionalidad, implementamos dos casos de uso para demostrar su utilidad. El primero es un planificador que asigna el núcleo a otros subprocesos cuando hay una fallada para tratar de hacer trabajo útil mientras esta se resuelve, ocultando así la latencia de la fallada y mejorando el rendimiento del sistema. El segundo permite que el código de manejo de las falladas se ejecute localmente en la GPU, en lugar de descargar el manejo a la CPU, mostrando que el manejo local de falladas también puede mejorar el rendimiento.Postprint (published version

    Accelerators for Data Processing

    Get PDF
    The explosive growth in digital data and its growing role in real-time analytics motivate the design of high-performance database management systems (DBMSs). Meanwhile, slowdown in supply voltage scaling has stymied improvements in core performance and ushered an era of power-limited chips. These developments motivate the design of software and hardware DBMS accelerators that (1) maximize utility by accelerating the dominant operations, and (2) provide flexibility in the choice of DBMS, data layout, and data types. In this thesis, we identify pointer-intensive data structure operations as a key performance and efficiency bottleneck in data analytics workloads. We observe that data analytics tasks include a large number of independent data structure lookups, each of which is characterized by dependent long-latency memory accesses due to pointer chasing. Unfortunately, exploiting such inter-lookup parallelism to overlap memory accesses from different lookups is not possible within the limited instruction window of modern out-of-order cores. Similarly, software prefetching techniques attempt to exploit inter-lookup parallelism by statically staging independent lookups, and hence break down in the face of irregularity across lookup stages. Based on these observations, we provide a dynamic software acceleration scheme for exploiting inter-lookup parallelism to hide the memory access latency despite the irregularities across lookups. Furthermore, we propose a programmable hardware accelerator to maximize the efficiency of the data structure lookups. As a result, through flexible hardware and software techniques we eliminate a key efficiency and performance bottleneck in data analytics operations

    From A to E: Analyzing TPC’s OLTP Benchmarks -- The obsolete, the ubiquitous, the unexplored

    Get PDF
    Introduced in 2007, TPC-E is the most recently standardized OLTP benchmark by TPC. Even though TPC-E has already been around for six years, it has not gained the popularity of its predecessor TPC-C: all the published results for TPC-E use a single database vendor’s product. TPC-E is significantly different than its predecessors. Some of its distinguishing characteristics are the non-uniform input creation, longer-running and more complicated transactions, more difficult partitioning etc. These factors slow down the adoption of TPC-E. In turn, there is little knowledge in the community about how TPC-E behaves micro-architecturally and within the database engine. To shed light on TPC-E, we implement it on top of a scalable open-source database engine, Shore-MT, and perform a workload characterization study, comparing it with the previous, much better known OLTP benchmarks of TPC: TPC-B and TPC-C. In parallel, we study the evolution of the OLTP benchmarks throughout the decades. Our results demonstrate that TPC-E exhibits similar micro-architectural behavior to TPC-B and TPC-C, even though it incurs less stall time and higher instructions per cycle. On the other hand, within the database engine it suffers more from logical lock contention. Therefore, we argue that, on the hardware side, TPC-E needs less aggressive processors. Whereas on the software side it can benefit from designs based on intra-transaction parallelism, logical partitioning, and optimistic concurrency control to minimize the effects of lock contention without introducing distributed transactions

    Transactions Chasing Scalability and Instruction Locality on Multicores

    Get PDF
    For several decades, online transaction processing (OLTP) has been one of the main server applications that drives innovations in the data management ecosystem, and in turn the database and computer architecture communities. Recent hardware trends oblige software to overcome two major challenges against systems scalability on modern multicore processors: (1) exploiting the abundant thread-level parallelism across cores and (2) taking advantage of the implicit parallelism within a core. The traditional design of the OLTP systems, however, faces inherent scalability problems due to its tightly coupled components. In addition, OLTP cannot exploit the full capability of the micro-architectural resources of modern processors because of the conventional scheduling decisions that ignore the cache locality for transactions. As a result, today’s commonly used server hardware remains largely underutilized leading to a huge waste of hardware resources and energy. .... In this thesis, we first identify the unbounded critical sections of traditional OLTP systems as the main enemy of thread-level parallelism. We design an alternative shared-everything system based on physiological partitioning (PLP) to eliminate the unbounded critical sections while providing an infrastructure for low-cost dynamic repartitioning and without introducing high-cost distributed transactions. Then, we demonstrate that L1 instruction cache stalls are the dominant factor leading to underutilization in the commodity servers. However, we also observe that independently of their high-level functionality, transactions running in parallel on a multicore system share significant amount of common instructions. By adaptively spreading the execution of a transaction over multiple cores through thread migration or multiplexing transactions on one core, we enable both an ample L1 instruction cache capacity for a transaction and reuse of common instructions across concurrent transactions. .... As the hardware demands more from the software to exploit the complexity and parallelism it offers in the multicore era, this work would change the way we traditionally schedule transactions. Instead of viewing a transaction as a single big task, we split it into smaller parts that can exploit data and instruction locality through careful dynamic scheduling decisions. The methods this thesis presents are not only specific to OLTP systems, but they can also benefit other types of applications that have concurrent requests executing a series of actions from a predefined set and face similar scalability problems on emerging hardware
    • …
    corecore