474 research outputs found

    Full Diversity Unitary Precoded Integer-Forcing

    Full text link
    We consider a point-to-point flat-fading MIMO channel with channel state information known both at transmitter and receiver. At the transmitter side, a lattice coding scheme is employed at each antenna to map information symbols to independent lattice codewords drawn from the same codebook. Each lattice codeword is then multiplied by a unitary precoding matrix P{\bf P} and sent through the channel. At the receiver side, an integer-forcing (IF) linear receiver is employed. We denote this scheme as unitary precoded integer-forcing (UPIF). We show that UPIF can achieve full-diversity under a constraint based on the shortest vector of a lattice generated by the precoding matrix P{\bf P}. This constraint and a simpler version of that provide design criteria for two types of full-diversity UPIF. Type I uses a unitary precoder that adapts at each channel realization. Type II uses a unitary precoder, which remains fixed for all channel realizations. We then verify our results by computer simulations in 2×22\times2, and 4×44\times 4 MIMO using different QAM constellations. We finally show that the proposed Type II UPIF outperform the MIMO precoding X-codes at high data rates.Comment: 12 pages, 8 figures, to appear in IEEE-TW

    Full-Rate, Full-Diversity, Finite Feedback Space-Time Schemes with Minimum Feedback and Transmission Duration

    Full text link
    In this paper a MIMO quasi static block fading channel with finite N-ary delay-free, noise-free feedback is considered. The transmitter uses a set of N Space-Time Block Codes (STBCs), one corresponding to each of the N possible feedback values, to encode and transmit information. The feedback function used at the receiver and the N component STBCs used at the transmitter together constitute a Finite Feedback Scheme (FFS). Although a number of FFSs are available in the literature that provably achieve full-diversity, there is no known universal criterion to determine whether a given arbitrary FFS achieves full-diversity or not. Further, all known full-diversity FFSs for T<N_t where N_t is the number of transmit antennas, have rate at the most 1. In this paper a universal necessary condition for any FFS to achieve full-diversity is given, using which the notion of Feedback-Transmission duration optimal (FT-Optimal) FFSs - schemes that use minimum amount of feedback N given the transmission duration T, and minimum transmission duration given the amount of feedback to achieve full-diversity - is introduced. When there is no feedback (N=1) an FT-optimal scheme consists of a single STBC with T=N_t, and the universal necessary condition reduces to the well known necessary and sufficient condition for an STBC to achieve full-diversity: every non-zero codeword difference matrix of the STBC must be of rank N_t. Also, a sufficient condition for full-diversity is given for the FFSs in which the component STBC with the largest minimum Euclidean distance is chosen. Using this sufficient condition full-rate (rate N_t) full-diversity FT-Optimal schemes are constructed for all (N_t,T,N) with NT=N_t. These are the first full-rate full-diversity FFSs reported in the literature for T<N_t. Simulation results show that the new schemes have the best error performance among all known FFSs.Comment: 12 pages, 5 figures, 1 tabl

    Space-time coding techniques with bit-interleaved coded modulations for MIMO block-fading channels

    Full text link
    The space-time bit-interleaved coded modulation (ST-BICM) is an efficient technique to obtain high diversity and coding gain on a block-fading MIMO channel. Its maximum-likelihood (ML) performance is computed under ideal interleaving conditions, which enables a global optimization taking into account channel coding. Thanks to a diversity upperbound derived from the Singleton bound, an appropriate choice of the time dimension of the space-time coding is possible, which maximizes diversity while minimizing complexity. Based on the analysis, an optimized interleaver and a set of linear precoders, called dispersive nucleo algebraic (DNA) precoders are proposed. The proposed precoders have good performance with respect to the state of the art and exist for any number of transmit antennas and any time dimension. With turbo codes, they exhibit a frame error rate which does not increase with frame length.Comment: Submitted to IEEE Trans. on Information Theory, Submission: January 2006 - First review: June 200

    Achieving a vanishing SNR-gap to exact lattice decoding at a subexponential complexity

    Full text link
    The work identifies the first lattice decoding solution that achieves, in the general outage-limited MIMO setting and in the high-rate and high-SNR limit, both a vanishing gap to the error-performance of the (DMT optimal) exact solution of preprocessed lattice decoding, as well as a computational complexity that is subexponential in the number of codeword bits. The proposed solution employs lattice reduction (LR)-aided regularized (lattice) sphere decoding and proper timeout policies. These performance and complexity guarantees hold for most MIMO scenarios, all reasonable fading statistics, all channel dimensions and all full-rate lattice codes. In sharp contrast to the above manageable complexity, the complexity of other standard preprocessed lattice decoding solutions is shown here to be extremely high. Specifically the work is first to quantify the complexity of these lattice (sphere) decoding solutions and to prove the surprising result that the complexity required to achieve a certain rate-reliability performance, is exponential in the lattice dimensionality and in the number of codeword bits, and it in fact matches, in common scenarios, the complexity of ML-based solutions. Through this sharp contrast, the work was able to, for the first time, rigorously quantify the pivotal role of lattice reduction as a special complexity reducing ingredient. Finally the work analytically refines transceiver DMT analysis which generally fails to address potentially massive gaps between theory and practice. Instead the adopted vanishing gap condition guarantees that the decoder's error curve is arbitrarily close, given a sufficiently high SNR, to the optimal error curve of exact solutions, which is a much stronger condition than DMT optimality which only guarantees an error gap that is subpolynomial in SNR, and can thus be unbounded and generally unacceptable in practical settings.Comment: 16 pages - submission for IEEE Trans. Inform. Theor

    Bound-intersection detection for multiple-symbol differential unitary space-time modulation

    Get PDF
    This paper considers multiple-symbol differential detection (MSD) of differential unitary space-time modulation (DUSTM) over multiple-antenna systems. We derive a novel exact maximum-likelihood (ML) detector, called the bound-intersection detector (BID), using the extended Euclidean algorithm for single-symbol detection of diagonal constellations. While the ML search complexity is exponential in the number of transmit antennas and the data rate, our algorithm, particularly in high signal-to-noise ratio, achieves significant computational savings over the naive ML algorithm and the previous detector based on lattice reduction. We also develop four BID variants for MSD. The first two are ML and use branch-and-bound, the third one is suboptimal, which first uses BID to generate a candidate subset and then exhaustively searches over the reduced space, and the last one generalizes decision-feedback differential detection. Simulation results show that the BID and its MSD variants perform nearly ML, but do so with significantly reduced complexity

    Explicit Space-Time Codes Achieving The Diversity-Multiplexing Gain Tradeoff

    Full text link
    A recent result of Zheng and Tse states that over a quasi-static channel, there exists a fundamental tradeoff, referred to as the diversity-multiplexing gain (D-MG) tradeoff, between the spatial multiplexing gain and the diversity gain that can be simultaneously achieved by a space-time (ST) block code. This tradeoff is precisely known in the case of i.i.d. Rayleigh-fading, for T>= n_t+n_r-1 where T is the number of time slots over which coding takes place and n_t,n_r are the number of transmit and receive antennas respectively. For T < n_t+n_r-1, only upper and lower bounds on the D-MG tradeoff are available. In this paper, we present a complete solution to the problem of explicitly constructing D-MG optimal ST codes, i.e., codes that achieve the D-MG tradeoff for any number of receive antennas. We do this by showing that for the square minimum-delay case when T=n_t=n, cyclic-division-algebra (CDA) based ST codes having the non-vanishing determinant property are D-MG optimal. While constructions of such codes were previously known for restricted values of n, we provide here a construction for such codes that is valid for all n. For the rectangular, T > n_t case, we present two general techniques for building D-MG-optimal rectangular ST codes from their square counterparts. A byproduct of our results establishes that the D-MG tradeoff for all T>= n_t is the same as that previously known to hold for T >= n_t + n_r -1.Comment: Revised submission to IEEE Transactions on Information Theor

    Golden Coded Multiple Beamforming

    Full text link
    The Golden Code is a full-rate full-diversity space-time code, which achieves maximum coding gain for Multiple-Input Multiple-Output (MIMO) systems with two transmit and two receive antennas. Since four information symbols taken from an M-QAM constellation are selected to construct one Golden Code codeword, a maximum likelihood decoder using sphere decoding has the worst-case complexity of O(M^4), when the Channel State Information (CSI) is available at the receiver. Previously, this worst-case complexity was reduced to O(M^(2.5)) without performance degradation. When the CSI is known by the transmitter as well as the receiver, beamforming techniques that employ singular value decomposition are commonly used in MIMO systems. In the absence of channel coding, when a single symbol is transmitted, these systems achieve the full diversity order provided by the channel. Whereas this property is lost when multiple symbols are simultaneously transmitted. However, uncoded multiple beamforming can achieve the full diversity order by adding a properly designed constellation precoder. For 2 \times 2 Fully Precoded Multiple Beamforming (FPMB), the general worst-case decoding complexity is O(M). In this paper, Golden Coded Multiple Beamforming (GCMB) is proposed, which transmits the Golden Code through 2 \times 2 multiple beamforming. GCMB achieves the full diversity order and its performance is similar to general MIMO systems using the Golden Code and FPMB, whereas the worst-case decoding complexity of O(sqrt(M)) is much lower. The extension of GCMB to larger dimensions is also discussed.Comment: accepted to conferenc

    Integer-Forcing Linear Receivers

    Get PDF
    Linear receivers are often used to reduce the implementation complexity of multiple-antenna systems. In a traditional linear receiver architecture, the receive antennas are used to separate out the codewords sent by each transmit antenna, which can then be decoded individually. Although easy to implement, this approach can be highly suboptimal when the channel matrix is near singular. This paper develops a new linear receiver architecture that uses the receive antennas to create an effective channel matrix with integer-valued entries. Rather than attempting to recover transmitted codewords directly, the decoder recovers integer combinations of the codewords according to the entries of the effective channel matrix. The codewords are all generated using the same linear code which guarantees that these integer combinations are themselves codewords. Provided that the effective channel is full rank, these integer combinations can then be digitally solved for the original codewords. This paper focuses on the special case where there is no coding across transmit antennas and no channel state information at the transmitter(s), which corresponds either to a multi-user uplink scenario or to single-user V-BLAST encoding. In this setting, the proposed integer-forcing linear receiver significantly outperforms conventional linear architectures such as the zero-forcing and linear MMSE receiver. In the high SNR regime, the proposed receiver attains the optimal diversity-multiplexing tradeoff for the standard MIMO channel with no coding across transmit antennas. It is further shown that in an extended MIMO model with interference, the integer-forcing linear receiver achieves the optimal generalized degrees-of-freedom.Comment: 40 pages, 16 figures, to appear in the IEEE Transactions on Information Theor
    corecore