22,567 research outputs found

    A typical reconstruction limit of compressed sensing based on Lp-norm minimization

    Full text link
    We consider the problem of reconstructing an NN-dimensional continuous vector \bx from PP constraints which are generated by its linear transformation under the assumption that the number of non-zero elements of \bx is typically limited to ρN\rho N (0ρ10\le \rho \le 1). Problems of this type can be solved by minimizing a cost function with respect to the LpL_p-norm ||\bx||_p=\lim_{\epsilon \to +0}\sum_{i=1}^N |x_i|^{p+\epsilon}, subject to the constraints under an appropriate condition. For several pp, we assess a typical case limit αc(ρ)\alpha_c(\rho), which represents a critical relation between α=P/N\alpha=P/N and ρ\rho for successfully reconstructing the original vector by minimization for typical situations in the limit N,PN,P \to \infty with keeping α\alpha finite, utilizing the replica method. For p=1p=1, αc(ρ)\alpha_c(\rho) is considerably smaller than its worst case counterpart, which has been rigorously derived by existing literature of information theory.Comment: 12 pages, 2 figure

    Sparsity Order Estimation from a Single Compressed Observation Vector

    Full text link
    We investigate the problem of estimating the unknown degree of sparsity from compressive measurements without the need to carry out a sparse recovery step. While the sparsity order can be directly inferred from the effective rank of the observation matrix in the multiple snapshot case, this appears to be impossible in the more challenging single snapshot case. We show that specially designed measurement matrices allow to rearrange the measurement vector into a matrix such that its effective rank coincides with the effective sparsity order. In fact, we prove that matrices which are composed of a Khatri-Rao product of smaller matrices generate measurements that allow to infer the sparsity order. Moreover, if some samples are used more than once, one of the matrices needs to be Vandermonde. These structural constraints reduce the degrees of freedom in choosing the measurement matrix which may incur in a degradation in the achievable coherence. We thus also address suitable choices of the measurement matrices. In particular, we analyze Khatri-Rao and Vandermonde matrices in terms of their coherence and provide a new design for Vandermonde matrices that achieves a low coherence

    Statistical Compressed Sensing of Gaussian Mixture Models

    Full text link
    A novel framework of compressed sensing, namely statistical compressed sensing (SCS), that aims at efficiently sampling a collection of signals that follow a statistical distribution, and achieving accurate reconstruction on average, is introduced. SCS based on Gaussian models is investigated in depth. For signals that follow a single Gaussian model, with Gaussian or Bernoulli sensing matrices of O(k) measurements, considerably smaller than the O(k log(N/k)) required by conventional CS based on sparse models, where N is the signal dimension, and with an optimal decoder implemented via linear filtering, significantly faster than the pursuit decoders applied in conventional CS, the error of SCS is shown tightly upper bounded by a constant times the best k-term approximation error, with overwhelming probability. The failure probability is also significantly smaller than that of conventional sparsity-oriented CS. Stronger yet simpler results further show that for any sensing matrix, the error of Gaussian SCS is upper bounded by a constant times the best k-term approximation with probability one, and the bound constant can be efficiently calculated. For Gaussian mixture models (GMMs), that assume multiple Gaussian distributions and that each signal follows one of them with an unknown index, a piecewise linear estimator is introduced to decode SCS. The accuracy of model selection, at the heart of the piecewise linear decoder, is analyzed in terms of the properties of the Gaussian distributions and the number of sensing measurements. A maximum a posteriori expectation-maximization algorithm that iteratively estimates the Gaussian models parameters, the signals model selection, and decodes the signals, is presented for GMM-based SCS. In real image sensing applications, GMM-based SCS is shown to lead to improved results compared to conventional CS, at a considerably lower computational cost

    On the SNR Variability in Noisy Compressed Sensing

    Full text link
    Compressed sensing (CS) is a sampling paradigm that allows to simultaneously measure and compress signals that are sparse or compressible in some domain. The choice of a sensing matrix that carries out the measurement has a defining impact on the system performance and it is often advocated to draw its elements randomly. It has been noted that in the presence of input (signal) noise, the application of the sensing matrix causes SNR degradation due to the noise folding effect. In fact, it might also result in the variations of the output SNR in compressive measurements over the support of the input signal, potentially resulting in unexpected non-uniform system performance. In this work, we study the impact of a distribution from which the elements of a sensing matrix are drawn on the spread of the output SNR. We derive analytic expressions for several common types of sensing matrices and show that the SNR spread grows with the decrease of the number of measurements. This makes its negative effect especially pronounced for high compression rates that are often of interest in CS.Comment: 4 pages + reference
    corecore