223 research outputs found

    Development of a MATLAB Toolbox for Mobile Radio Channel Simulators

    Get PDF
    A profound knowledge of mobile radio channels is required for the development, evaluation, and also assessment at practical conditions of present and future mobile radio communication systems. The modelling, analysis, and simulation of mobile radio channels are important sub area since the initiation of mobile communications. In addition to that knowledge of channel behaviour in mobile radio communication is extensively recommended for the study of transmitter/receiver performances. Our intention in this master's thesis is to develop various kinds of mobile fading channel simulators using MATLAB and embed them into MATLB software as a toolbox. Implemented channel simulators were combined into a user-friendly Matlab toolbox from which users can easily select well-known channel models to test and to study the performance of mobile communication systems. The help file was developed based on HTML. It gives better support for the new users to work on the developed channel simulators, run the test procedures as well as parameter computation. The help file consistent with other supplementary programs like computation of PDF and CDF for different distributions, Rice simulation model, extended Suzuki process type I and II simulator etc. In addition to that each program consists with guidelines embedded with the source code. The help file web interfaces are listed in Appendix- 1.The toolbox can be integrated into the new release of Matlab software. The toolbox contains channel simulators for simulating non-stationary land mobile satellite channel, spatial shadowing processes, MIMO channels, multiple uncorrelated Rayleigh fading channels, mobile to mobile channel, frequency hopping channels etc. We developed set of test procedures, such as the autocorrelation function ACF, average duration of fades ADF, the probability density function PDF, and the level-crossing rate LCR etc., in order to test and to confirm the correctness of the implemented channel simulators. Proposed new algorithms to compute the model parameters of the channel simulators were also implemented in the toolbox to enable the parameterization of the channel simulators under specific propagation conditions. Finally, “how can a channel simulator be tested?” have been address in the thesis as a research question. It was based on the comparison of simulation results with the measured model or the reference model under different scenarios. In addition to that selection of the simulation time duration, sampling rate and size of the samples were considered. Developed test procedures were helped to assess the implemented channel simulators

    Design and performance analysis of energy harvesting communications systems

    Get PDF
    The continuous growth of high data rates with huge increase in the number of mobile devices and communication infrastructure have led to greenhouse gas emission, higher pollution and higher energy costs. After the deployment of 4G and immense data rate and QoS requirements for 5G, there is an urgent need to design future wireless systems that aim to improve energy efficiency (EE) and spectral efficiency (SE). One of the possible solutions is to use energy harvesting (EH), which promises to reduce energy consumption issues in information and communication technology sector. In order to tackle these challenges, this thesis is focused on the design and performance analysis of EH systems. EH has emerged as a potential candidate for green wireless communication which not only provides solution to the energy limitation problem but also prolongs the lifetime of batteries. First, the performance evaluation of an EH-equipped dual-hop relaying system is proposed to improve the system throughput and the end-to-end signal-to-noise ratio (SNR). We derive novel closed-form expressions for cumulative distribution function of individual link's SNR and of the end-to-end SNR. In addition, the proposed model analyses the ergodic capacity which is an important performance metric for delay-sensitive services. Further, these closed-form expressions reduce the computational complexity of the receiver architecture for practical systems. An insight through system parameters provide significant improvement in end-to-end SNR especially when both transmitter and relay nodes are equipped with harvesting sources. Second, performance analysis and optimal transmission power allocation techniques for EH-equipped system are studied. Our proposed model investigates and provides the conditions under which the harvesting can improve the system performance. In this work, novel closed-form expressions are calculated for the maximum achievable EE, SE and EH beneficialness condition. We studied two cases such as power is adapted to variations in the channel and when transmit power is fixed. We proved that EE-optimum input power decreases with EH power level. Also, system parameters demonstrate the conditions under which EH improves overall system performance. Finally, a multi-objective optimization problem is formulated that jointly maximizes EE and SE for point-to-point EH-equipped system. We introduce new importance weight which set the priority levels of EE versus SE of the system. The formulated problem is solved by using convex optimization method to achieve optimal solution. The proposed system model provides freedom to choose any value for importance weight to satisfy quality of service (QoS) requirements and the flexibility of balancing between EE and SE performance metrics

    The B-G News March 13, 1962

    Get PDF
    The BGSU campus student newspaper March 13, 1962. Volume 46 - Issue 39https://scholarworks.bgsu.edu/bg-news/2648/thumbnail.jp

    The Key 1974

    Get PDF
    Bowling Green State University 1974 Key Yearbookhttps://scholarworks.bgsu.edu/yearbooks/1134/thumbnail.jp

    The Key 1981

    Get PDF
    Bowling Green State University 1981 Key Yearbookhttps://scholarworks.bgsu.edu/yearbooks/1141/thumbnail.jp

    The Key 1980

    Get PDF
    Bowling Green State University 1980 Key Yearbookhttps://scholarworks.bgsu.edu/yearbooks/1140/thumbnail.jp

    Spartan Daily, May 3, 1950

    Get PDF
    Volume 38, Issue 125https://scholarworks.sjsu.edu/spartandaily/11389/thumbnail.jp

    Maine Campus October 12 1961

    Get PDF
    • …
    corecore