1,205 research outputs found

    Proceedings of the NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications

    Get PDF
    The proceedings of the National Space Science Data Center Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications held July 23 through 25, 1991 at the NASA/Goddard Space Flight Center are presented. The program includes a keynote address, invited technical papers, and selected technical presentations to provide a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disk and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's

    Evaluation of Cache Inclusion Policies in Cache Management

    Get PDF
    Processor speed has been increasing at a higher rate than the speed of memories over the last years. Caches were designed to mitigate this gap and, ever since, several cache management techniques have been designed to further improve performance. Most techniques have been designed and evaluated on non-inclusive caches even though many modern processors implement either inclusive or exclusive policies. Exclusive caches benefit from a larger effective capacity, so they might become more popular when the number of cores per last-level cache increases. This thesis aims to demonstrate that the best cache management techniques for exclusive caches do not necessarily have to be the same as for non-inclusive or inclusive caches. To assess this statement we evaluated several cache management techniques with different inclusion policies, number of cores and cache sizes. We found that the configurations for inclusive and non-inclusive policies usually performed similarly, but for exclusive caches the best configurations were indeed different. Prefetchers impacted performance more than replacement policies, and determined which configurations were the best ones. Also, exclusive caches showed a higher speedup on multi-core. The least recently used (LRU) replacement policy is among the best policies for any prefetcher combination in exclusive caches but is the one used as a baseline in most cache replacement policy research. Therefore, we conclude that the results in this thesis motivate further research on prefetchers and replacement policies targeted to exclusive caches

    Design and Implementation of a Chip Multiprocessor with an Efficient Multilevel Cache System

    Get PDF
    Computer designers utilize the recent huge advances in Very Large Scale Integration (VLSI) to get Chip Multiprocessor (CMP) by placing several processors on the same chip die. The CMP is the dominant architecture to improve the performance of the current computing systems. However, accessing a shared data by several processors is a primary challenge in CMP. The data consistency must be reached among all memory hierarchies to ensure correct behavior and higher performance. This paper, proposed a CMP with an efficient multilevel cache system, which enhances miss rate and latency (penalty) by designing and implementation of different write policies with two levels of cache. The proposed system is implemented and tested using Hardware Description Language (VHDL) on Altera’s FPGA chip. The results show that a combination of write-through without buffer for the first level and write-back for the second level offers a clear improvement on the multilevel cache system performance

    The Performance And Power Impact Of Using Multiple Dram Address Mapping Schemes In Multicore Processors

    Get PDF
    Lowest-level cache misses are satisfied by the main memory through a specific address mapping scheme that is hard-coded in the memory controller. A dynamic address mapping scheme technique is investigated to provide higher performance and lower power consumption, and a method to throttle memory to meet a specific power budget. Several experiments are conducted on single and multithreaded synthetic memory traces -to study extreme cases- and validate the usability of the proposed dynamic mapping scheme over the fixed one. Results show that applications’ performance varies according to the mapping scheme used, and a dynamic mapping scheme achieves up to 2x increase in peak bandwidth utilization and around 30% higher energy efficiency than a system using only a single fixed scheme Moreover, the technique can be used to limit memory accesses into a subset of the memory devices by controlling data allocation at a finer granularity, providing a method to throttle main memory by allowing unaccessed devices to be put into power-down mode, hence saving power to meet a certain power budget

    A differentiated proposal of three dimension i/o performance characterization model focusing on storage environments

    Get PDF
    The I/O bottleneck remains a central issue in high-performance environments. Cloud computing, high-performance computing (HPC) and big data environments share many underneath difficulties to deliver data at a desirable time rate requested by high-performance applications. This increases the possibility of creating bottlenecks throughout the application feeding process by bottom hardware devices located in the storage system layer. In the last years, many researchers have been proposed solutions to improve the I/O architecture considering different approaches. Some of them take advantage of hardware devices while others focus on a sophisticated software approach. However, due to the complexity of dealing with high-performance environments, creating solutions to improve I/O performance in both software and hardware is challenging and gives researchers many opportunities. Classifying these improvements in different dimensions allows researchers to understand how these improvements have been built over the years and how it progresses. In addition, it also allows future efforts to be directed to research topics that have developed at a lower rate, balancing the general development process. This research present a three-dimension characterization model for classifying research works on I/O performance improvements for large scale storage computing facilities. This classification model can also be used as a guideline framework to summarize researches providing an overview of the actual scenario. We also used the proposed model to perform a systematic literature mapping that covered ten years of research on I/O performance improvements in storage environments. This study classified hundreds of distinct researches identifying which were the hardware, software, and storage systems that received more attention over the years, which were the most researches proposals elements and where these elements were evaluated. In order to justify the importance of this model and the development of solutions that targets I/O performance improvements, we evaluated a subset of these improvements using a a real and complete experimentation environment, the Grid5000. Analysis over different scenarios using a synthetic I/O benchmark demonstrates how the throughput and latency parameters behaves when performing different I/O operations using distinct storage technologies and approaches.O gargalo de E/S continua sendo um problema central em ambientes de alto desempenho. Os ambientes de computação em nuvem, computação de alto desempenho (HPC) e big data compartilham muitas dificuldades para fornecer dados em uma taxa de tempo desejável solicitada por aplicações de alto desempenho. Isso aumenta a possibilidade de criar gargalos em todo o processo de alimentação de aplicativos pelos dispositivos de hardware inferiores localizados na camada do sistema de armazenamento. Nos últimos anos, muitos pesquisadores propuseram soluções para melhorar a arquitetura de E/S considerando diferentes abordagens. Alguns deles aproveitam os dispositivos de hardware, enquanto outros se concentram em uma abordagem sofisticada de software. No entanto, devido à complexidade de lidar com ambientes de alto desempenho, criar soluções para melhorar o desempenho de E/S em software e hardware é um desafio e oferece aos pesquisadores muitas oportunidades. A classificação dessas melhorias em diferentes dimensões permite que os pesquisadores entendam como essas melhorias foram construídas ao longo dos anos e como elas progridem. Além disso, também permite que futuros esforços sejam direcionados para tópicos de pesquisa que se desenvolveram em menor proporção, equilibrando o processo geral de desenvolvimento. Esta pesquisa apresenta um modelo de caracterização tridimensional para classificar trabalhos de pesquisa sobre melhorias de desempenho de E/S para instalações de computação de armazenamento em larga escala. Esse modelo de classificação também pode ser usado como uma estrutura de diretrizes para resumir as pesquisas, fornecendo uma visão geral do cenário real. Também usamos o modelo proposto para realizar um mapeamento sistemático da literatura que abrangeu dez anos de pesquisa sobre melhorias no desempenho de E/S em ambientes de armazenamento. Este estudo classificou centenas de pesquisas distintas, identificando quais eram os dispositivos de hardware, software e sistemas de armazenamento que receberam mais atenção ao longo dos anos, quais foram os elementos de proposta mais pesquisados e onde esses elementos foram avaliados. Para justificar a importância desse modelo e o desenvolvimento de soluções que visam melhorias no desempenho de E/S, avaliamos um subconjunto dessas melhorias usando um ambiente de experimentação real e completo, o Grid5000. Análises em cenários diferentes usando um benchmark de E/S sintética demonstra como os parâmetros de vazão e latência se comportam ao executar diferentes operações de E/S usando tecnologias e abordagens distintas de armazenamento

    Improving the SLLC Efficiency by exploiting reuse locality and adjusting prefetch

    Get PDF
    Desde los teléfonos móviles inteligentes hasta nuestro ordenador portátil los sistemas electrónicos que incluyen chips multiprocesador (CMP) están presentes en nuestra vida cotidiana de una manera abrumadora. Los CMPs contienen varios núcleos o CPUs que tienen que ser alimentados con datos provenientes de la memoria. Pero la velocidad a la que los núcleos que forman el CMP necesitan los datos es mucho mayor que la velocidad a la que la memoria es capaz de proporcionar dichos datos. De hecho, esta diferencia ha ido aumentando desde prácticamente el día en el que ambos dispositivos fueron concebidos. Esta diferencia en el rendimiento de ambos dispositivos se ha venido a llamar "the memory gap". Al mismo tiempo que dicha diferencia aumentaba, los lenguajes de programación proporcionaban a los programadores modelos de memoria que podían acceder a un espacio prácticamente infinito y al que, además, se accedía de manera instantánea. Pero el tamaño de cualquier estructura hardware está íntimamente relacionado con su tiempo de acceso y éste será mayor cuanto mayor sea el tamaño la estructura hardware a acceder. Con el ánimo de deshacer esta aparente contradicción, los arquitectos de computadores incluyeron memorias intermedias entre las CPUs y la grande, aunque al mismo tiempo lenta, memoria principal. Estas memorias intermedias se denominan memorias cache o simplemente caches. Debido a la gran diferencia que existe entre la velocidad del procesador y la de la memoria principal. Los CMPs en la actualidad están provistos de una jerarquía de memorias cache que tiene dos o tres niveles. Las caches que están cerca del procesador sólo contienen unos pocos kilobytes (entre 4 y 64) accesibles en uno o pocos ciclos de reloj, mientras que las que se encuentran más alejadas del procesador pueden llegar a contener varios megabytes y tener un tiempo de acceso de varias decenas de ciclos. Los programas al ser ejecutados muestran una propiedad llamada localidad que se expresa en los ejes espacial y temporal. La localidad temporal es la propiedad que dice que el programa volverá a usar datos que usó recientemente, cuanto más recientemente los usó, más probable es que vuelva a hacerlo. Mientras que la localidad espacial es la propiedad que dice que el programa tenderá a usar datos que están próximos en el espacio de memoria a datos que usó recientemente. Las memorias cache han sido diseñadas tradicionalmente para explotar la localidad. En concreto, la localidad temporal se explotaba mediante una adecuada política de reemplazo, mientras que la localidad espacial se explota al contener cada bloque de cache varios datos o palabras. Un modo adicional de conseguir explotar una mayor cantidad de localidad espacial es mediante el uso de la técnica llamada prebúsqueda. La política de reemplazo influye de manera crítica en la tasa de aciertos de la memoria cache. En un CMP provisto de una jerarquía de memorias cache, la localidad temporal se explota en aquellos niveles más cercanos a los núcleos. Así que muchos de los bloques insertados en la SLLC son de un solo uso, es decir, estos bloques no experimentarán ningún acierto más durante todo el tiempo que permanezcan en la SLLC. Sin embargo, aquellos bloques que lleguen a experimentar un acierto en la SLLC, normalmente experimentarán muchos más aciertos. Por lo tanto, que la política de reemplazo base sus decisiones en la posible explotación de la localidad temporal, es una asunción inválida cuando hablamos de la SLLC. Por el contrario, Este comportamiento indica que dicha política de reemplazo de la SLLC debería estar basada en el reúso1 en lugar de en la localidad temporal. La prebúsqueda hardware tiene por objetivo cargar en la cache datos antes de que sea el procesador quien los pida. La validez de esta técnica a la hora de reducir la latencia media de acceso a memoria ha sido ampliamente demostrada. La prebúsqueda funciona especialmente bien en las jerarquías de memoria de sistemas monoprocesador, donde solamente hay un flujo de datos entre el procesador y la memoria. Sin embargo, cuando la prebúsqueda se usa en un sistema multiprocesador donde diferentes aplicaciones se están ejecutando al mismo tiempo, las prebúsquedas asociadas a un núcleo podrían interferir con los datos cargados en la cache por otro núcleo, provocando la eliminación de los contenidos de otra aplicación y dañando su rendimiento. Es necesario por tanto un mecanismo para regular la prebúsqueda asociada a cada uno de los núcleos. Este mecanismo debería tener por objetivo el mejorar el rendimiento general del sistema. 1 Aunque el DRAE no contenga su definición, usaremos aquí el verbo reusar (así como sus formas derivadas) como sinónimo de volver a utilizar. Cada fallo en la SLLC provoca un acceso a la memoria principal que se encuentra fuera del chip. Además la memoria principal está hecha de chips de DRAM. Ambos factores incrementan su latencia de acceso, latencia que se suma a cada uno de los accesos que falla en la SLLC, penalizando a la vez la latencia media de acceso a memoria. Por lo tanto, la tasa de aciertos de la SLLC es un factor crítico para lograr una latencia media de acceso a memoria óptima. Esta tesis fija su atención en la eficiencia de los dos aspectos comentados con anterioridad: la eficiencia de la prebúsqueda y la eficiencia de la política de reemplazo. Las contribuciones principales de esta tesis son las siguientes: 1) Enunciamos una propiedad llamada localidad de reúso que dice que i) los bloques de cache que hayan sido usados más de una vez tienen una alta probabilidad de ser usados muchas veces en el futuro. ii) Los bloques de cache recientemente reusados son más útiles que otros reúsados previamente. Defendemos en esta tesis que el patrón de acceso a la SLLC muestra localidad de reúso. 2) En esta tesis se proponen dos algoritmos de reemplazo capaces de explotar la localidad de reúso, Least-recently reused (LRR) y Not-recently reused (NRR). Estos dos nuevos algoritmos son modificaciones de otros dos muy bien conocidos: Least-recently used (LRU) y Not-recently used (NRU). Dichos algoritmos fueron diseñados para explotar la localidad temporal, mientras que los nuestros explotan la local- idad de reúso. Las modificaciones propuestas no suponen ninguna sobrecarga hardware respecto a los algoritmos base. Durante esta tesis se muestra que nuestros algoritmos mejoran consistentemente el rendimiento de los originales. 3) Proponemos un novedoso diseño para la SLLC llamado Reuse Cache. En este diseño los arrays de etiquetas y datos de la cache están desacoplados. Solamente se almacenan en el array de datos aquellos bloques que hayan mostrado reúso. El array de etiquetas se usa para detectar reúso y mantener la coherencia. Esta estructura permite reducir el tamaño del array de datos de manera drástica. Como ejemplo, una Reuse Cache con un array de etiquetas equivalente al de una cache convencional de 4MB y un array de datos de 1MB, tiene el mismo rendimiento medio que una cache convencional de 8MB, pero con un ahorro de almacenamiento de en torno al 84%. 4) Un controlador de bajo coste llamado ABS capaz de ajustar la agresividad de la prebúsqueda asociada a cada uno de los núcleos de un CMP pero con el ánimo de mejorar el rendimiento general del sistema. El controlador funciona de manera aislada en cada uno de los bancos de la SLLC y recoge métricas locales. Para optimizar el rendimiento global del sistema busca la combinación óptima de valores de la agresividad de prebúsqueda. Para inferir cuál es esa combinación óptima usa una estrategia de búsqueda hill-climbing

    Microarchitectural techniques to reduce energy consumption in the memory hierarchy

    Get PDF
    This thesis states that dynamic profiling of the memory reference stream can improve energy and performance in the memory hierarchy. The research presented in this theses provides multiple instances of using lightweight hardware structures to profile the memory reference stream. The objective of this research is to develop microarchitectural techniques to reduce energy consumption at different levels of the memory hierarchy. Several simple and implementable techniques were developed as a part of this research. One of the techniques identifies and eliminates redundant refresh operations in DRAM and reduces DRAM refresh power. Another, reduces leakage energy in L2 and higher level caches for multiprocessor systems. The emphasis of this research has been to develop several techniques of obtaining energy savings in caches using a simple hardware structure called the counting Bloom filter (CBF). CBFs have been used to predict L2 cache misses and obtain energy savings by not accessing the L2 cache on a predicted miss. A simple extension of this technique allows CBFs to do way-estimation of set associative caches to reduce energy in cache lookups. Another technique using CBFs track addresses in a Virtual Cache and reduce false synonym lookups. Finally this thesis presents a technique to reduce dynamic power consumption in level one caches using significance compression. The significant energy and performance improvements demonstrated by the techniques presented in this thesis suggest that this work will be of great value for designing memory hierarchies of future computing platforms.Ph.D.Committee Chair: Lee, Hsien-Hsin S.; Committee Member: Cahtterjee,Abhijit; Committee Member: Mukhopadhyay, Saibal; Committee Member: Pande, Santosh; Committee Member: Yalamanchili, Sudhaka

    Performance analysis of Intel Core 2 Duo processor

    Get PDF
    With the emergence of thread level parallelism as a more efficient method of improving processor performance, Chip Multiprocessor (CMP) technology is being more widely used in developing processor architectures. Also, the widening gap between CPU and memory speed has evoked the interest of researchers to understand performance of memory hierarchical architectures. As part of this research, performance characteristic studies were carried out on the Intel Core 2 Duo, a dual core power efficient processor, using a variety of new generation benchmarks. This study provides a detailed analysis of the memory hierarchy performance and the performance scalability between single and dual core processors. The behavior of SPEC CPU2006 benchmarks running on Intel Core 2 Duo processor is also explained. Lastly, the overall execution time and throughput measurement using both multi-programmed and multi-threaded workloads for the Intel Core 2 Duo processor is reported and compared to that of the Intel Pentium D and AMD Athlon 64X2 processors. Results showed that the Intel Core 2 Duo had the best performance for a variety of workloads due to its advanced micro-architectural features such as the shared L2 cache, fast cache to cache communication and smart memory access

    Effective data parallel computing on multicore processors

    Get PDF
    The rise of chip multiprocessing or the integration of multiple general purpose processing cores on a single chip (multicores), has impacted all computing platforms including high performance, servers, desktops, mobile, and embedded processors. Programmers can no longer expect continued increases in software performance without developing parallel, memory hierarchy friendly software that can effectively exploit the chip level multiprocessing paradigm of multicores. The goal of this dissertation is to demonstrate a design process for data parallel problems that starts with a sequential algorithm and ends with a high performance implementation on a multicore platform. Our design process combines theoretical algorithm analysis with practical optimization techniques. Our target multicores are quad-core processors from Intel and the eight-SPE IBM Cell B.E. Target applications include Matrix Multiplications (MM), Finite Difference Time Domain (FDTD), LU Decomposition (LUD), and Power Flow Solver based on Gauss-Seidel (PFS-GS) algorithms. These applications are popular computation methods in science and engineering problems and are characterized by unit-stride (MM, LUD, and PFS-GS) or 2-point stencil (FDTD) memory access pattern. The main contributions of this dissertation include a cache- and space-efficient algorithm model, integrated data pre-fetching and caching strategies, and in-core optimization techniques. Our multicore efficient implementations of the above described applications outperform nai¨ve parallel implementations by at least 2x and scales well with problem size and with the number of processing cores

    Applications for Packetized Memory Interfaces

    Get PDF
    The performance of the memory subsystem has a large impact on the performance of modern computer systems. Many important applications are memory bound and others are expected to become memory bound in the future. The importance of memory performance makes it imperative to understand and optimize the interactions between applications and the system architecture. Prototyping and exploring various configurations of memory systems can give important insights, but current memory interfaces are limited in the amount of flexibility they provide. This inflexibility stems primarily from the fixed timing of the memory interface. Packetized memory interfaces abstract away the underlying timing characteristics of the memory technology and allow greater flexibility in the design of memory hierarchies. This work uses packetized interfaces to explore memory hierarchy designs and prototype a novel network attached memory. Since current processors do not support packetized memory interfaces, a coherent processor bus is used as a memory interface for the DiskRAM project. The Hybrid Memory Cube (HMC) packetized memory interface is also presented and used to prototype network-attached memory. The HMC interface is discussed in detail, along with the design and implementation of a Universal Verification Component (UVC) environment. The convergence of network and memory interfaces is also predicted
    corecore