115 research outputs found

    Application of reduced-set pareto-lipschitzian optimization to truss optimization

    Get PDF
    In this paper, a recently proposed global Lipschitz optimization algorithm Pareto-Lipschitzian Optimization with Reduced-set (PLOR) is further developed, investigated and applied to truss optimization problems. Partition patterns of the PLOR algorithm are similar to those of DIviding RECTangles (DIRECT), which was widely applied to different real-life problems. However here a set of all Lipschitz constants is reduced to just two: the maximal and the minimal ones. In such a way the PLOR approach is independent of any user-defined parameters and balances equally local and global search during the optimization process. An expanded list of other well-known DIRECT-type algorithms is used in investigation and experimental comparison using the standard test problems and truss optimization problems. The experimental investigation shows that the PLOR algorithm gives very competitive results to other DIRECT-type algorithms using standard test problems and performs pretty well on real truss optimization problems

    Equilibrium Problems with Equilibrium Constraints via Multiobjective Optimization

    Get PDF
    The paper concerns a new class of optimization-related problems called Equilibrium Problems with Equilibrium Constraints (EPECs). One may treat them as two level hierarchical problems, which involve equilibria at both lower and upper levels. Such problems naturally appear in various applications providing an equilibrium counterpart (at the upper level) of Mathematical Programs with Equilibrium Constraints (MPECs). We develop a unified approach to both EPECs and MPECs from the viewpoint of multiobjective optimization subject to equilibrium constraints. The problems of this type are intrinsically nonsmooth and require the use of generalized differentiation for their analysis and applications. This paper presents necessary optimality conditions for EPECs in finite-dimensional spaces based an advanced generalized variational tools of variational analysis. The optimality conditions are derived in normal form under certain qualification requirements, which can be regarded as proper analogs of the classical Mangasarian-Fromovitz constraint qualification in the general settings under consideration

    Necessary Conditions in Multiobjective Optimization With Equilibrium Constraints

    Get PDF
    In this paper we study multiobjective optimization problems with equilibrium constraints (MOECs) described by generalized equations in the form 0 is an element of the set G(x,y) + Q(x,y), where both mappings G and Q are set-valued. Such models particularly arise from certain optimization-related problems governed by variational inequalities and first-order optimality conditions in nondifferentiable programming. We establish verifiable necessary conditions for the general problems under consideration and for their important specifications using modern tools of variational analysis and generalized differentiation. The application of the obtained necessary optimality conditions is illustrated by a numerical example from bilevel programming with convex while nondifferentiable data

    The Second Welfare Theorem with public goods in general economies

    Get PDF
    In this paper we prove a general version of the Second Welfare Theorem for a non-convex and non-transitive economy, with public goods and other externalities in consumption. For this purpose we use the sub-gradient to the distance function (normal cone) to define the pricing rule in this general context.Non-convex separation, Second Welfare Theorem, public goods, externalities.

    Subdifferentials and Stability Analysis of Feasible Set and Pareto Front Mappings in Linear Multiobjective Optimization

    Get PDF
    The paper concerns multiobjective linear optimization problems in R^n that are parameterized with respect to the right-hand side perturbations of inequality constraints. Our focus is on measuring the variation of the feasible set and the Pareto front mappings around a nominal element while paying attention to some specific directions. This idea is formalized by means of the so-called epigraphical multifunction, which is defined by adding a fixed cone to the images of the original mapping. Through the epigraphical feasible and Pareto front mappings we describe the corresponding vector subdifferentials, and employ them to verifying Lipschitzian stability of the perturbed mappings with computing the associated Lipschitz moduli. The particular case of ordinary linear programs is analyzed, where we show that the subdifferentials of both multifunctions are proportional subsets. We also provide a method for computing the optimal value of linear programs without knowing any optimal solution. Some illustrative examples are also given in the paper.Comment: 23 page

    A multi-objective DIRECT algorithm for ship hull optimization

    Get PDF
    The paper is concerned with black-box nonlinear constrained multi-objective optimization problems. Our interest is the definition of a multi-objective deterministic partition-based algorithm. The main target of the proposed algorithm is the solution of a real ship hull optimization problem. To this purpose and in pursuit of an efficient method, we develop an hybrid algorithm by coupling a multi-objective DIRECT-type algorithm with an efficient derivative-free local algorithm. The results obtained on a set of “hard” nonlinear constrained multi-objective test problems show viability of the proposed approach. Results on a hull-form optimization of a high-speed catamaran (sailing in head waves in the North Pacific Ocean) are also presented. In order to consider a real ocean environment, stochastic sea state and speed are taken into account. The problem is formulated as a multi-objective optimization aimed at (i) the reduction of the expected value of the mean total resistance in irregular head waves, at variable speed and (ii) the increase of the ship operability, with respect to a set of motion-related constraints. We show that the hybrid method performs well also on this industrial problem

    Multi-Objective Optimization of Voyage Plans for Ships

    Get PDF
    In this thesis two methods are investigated to solve a multi-objective optimization problem for voyage planning. The first method, grid search, is a brute force search in a three-dimensional graph while the other uses the Lipschitzian algorithm DIRECT to do a continuous search along a nominal route. The grid search method gives a computation time of 7.6 minutes for a route from Gothenburg to New York. This is obtained partly by parallelizing on 10 cores but also implementing core routines efficiently in compiled programming languages. However, the continuous search method with DIRECT is not suitable for a realistic voyage planning problem. It is more due to the nature of the DIRECT algorithm than the implementation details

    Multiobjective Optimization Problems with Equilibrium Constraints

    Get PDF
    The paper is devoted to new applications of advanced tools of modern variational analysis and generalized differentiation to the study of broad classes of multiobjective optimization problems subject to equilibrium constraints in both finite-dimensional and infinite-dimensional settings. Performance criteria in multiobjectivejvector optimization are defined by general preference relationships satisfying natural requirements, while equilibrium constraints are described by parameterized generalized equations/variational conditions in the sense of Robinson. Such problems are intrinsically nonsmooth and are handled in this paper via appropriate normal/coderivativejsubdifferential constructions that exhibit full calculi. Most of the results obtained are new even in finite dimensions, while the case of infinite-dimensional spaces is significantly more involved requiring in addition certain sequential normal compactness properties of sets and mappings that are preserved under a broad spectrum of operations

    Optimization and Equilibrium Problems with Equilibrium Constraints

    Get PDF
    The paper concerns optimization and equilibrium problems with the so-called equilibrium constraints (MPEC and EPEC), which frequently appear in applications to operations research. These classes of problems can be naturally unified in the framework of multiobjective optimization with constraints governed by parametric variational systems (generalized equations, variational inequalities, complementarity problems, etc.). We focus on necessary conditions for optimal solutions to MPECs and EPECs under general assumptions in finite-dimensional spaces. Since such problems are intrinsically nonsmooth, we use advanced tools of generalized differentiation to study optimal solutions by methods of modern variational analysis. The general results obtained are concretized for special classes of MPECs and EPECs important in applications

    Local cone approximations in mathematical programming

    Get PDF
    We show how to use intensively local cone approximations to obtain results in some fields of optimization theory as optimality conditions, constraint qualifications, mean value theorems and error bound
    • …
    corecore