80 research outputs found

    Approximation and Parameterized Complexity of Minimax Approval Voting

    Full text link
    We present three results on the complexity of Minimax Approval Voting. First, we study Minimax Approval Voting parameterized by the Hamming distance dd from the solution to the votes. We show Minimax Approval Voting admits no algorithm running in time O(2o(dlogd))\mathcal{O}^\star(2^{o(d\log d)}), unless the Exponential Time Hypothesis (ETH) fails. This means that the O(d2d)\mathcal{O}^\star(d^{2d}) algorithm of Misra et al. [AAMAS 2015] is essentially optimal. Motivated by this, we then show a parameterized approximation scheme, running in time O((3/ϵ)2d)\mathcal{O}^\star(\left({3}/{\epsilon}\right)^{2d}), which is essentially tight assuming ETH. Finally, we get a new polynomial-time randomized approximation scheme for Minimax Approval Voting, which runs in time nO(1/ϵ2log(1/ϵ))poly(m)n^{\mathcal{O}(1/\epsilon^2 \cdot \log(1/\epsilon))} \cdot \mathrm{poly}(m), almost matching the running time of the fastest known PTAS for Closest String due to Ma and Sun [SIAM J. Comp. 2009].Comment: 14 pages, 3 figures, 2 pseudocode

    Computational Aspects of Multi-Winner Approval Voting

    Full text link
    We study computational aspects of three prominent voting rules that use approval ballots to elect multiple winners. These rules are satisfaction approval voting, proportional approval voting, and reweighted approval voting. We first show that computing the winner for proportional approval voting is NP-hard, closing a long standing open problem. As none of the rules are strategyproof, even for dichotomous preferences, we study various strategic aspects of the rules. In particular, we examine the computational complexity of computing a best response for both a single agent and a group of agents. In many settings, we show that it is NP-hard for an agent or agents to compute how best to vote given a fixed set of approval ballots from the other agents

    Mathematical Programming formulations for the efficient solution of the kk-sum approval voting problem

    Get PDF
    In this paper we address the problem of electing a committee among a set of mm candidates and on the basis of the preferences of a set of nn voters. We consider the approval voting method in which each voter can approve as many candidates as she/he likes by expressing a preference profile (boolean mm-vector). In order to elect a committee, a voting rule must be established to `transform' the nn voters' profiles into a winning committee. The problem is widely studied in voting theory; for a variety of voting rules the problem was shown to be computationally difficult and approximation algorithms and heuristic techniques were proposed in the literature. In this paper we follow an Ordered Weighted Averaging approach and study the kk-sum approval voting (optimization) problem in the general case 1k<n1 \leq k <n. For this problem we provide different mathematical programming formulations that allow us to solve it in an exact solution framework. We provide computational results showing that our approach is efficient for medium-size test problems (nn up to 200, mm up to 60) since in all tested cases it was able to find the exact optimal solution in very short computational times

    Parameterized Complexity of Multi-winner Determination: More Effort Towards Fixed-Parameter Tractability

    Get PDF
    We study the parameterized complexity of Winners Determination for three prevalent kk-committee selection rules, namely the minimax approval voting (MAV), the proportional approval voting (PAV), and the Chamberlin-Courant's approval voting (CCAV). It is known that Winners Determination for these rules is NP-hard. Moreover, these problems have been studied from the parameterized complexity point of view with respect to some natural parameters recently. However, many results turned out to be W[1]-hard or W[2]-hard. Aiming at deriving more fixed-parameter algorithms, we revisit these problems by considering more natural and important single parameters, combined parameters, and structural parameters.Comment: 31 pages, 2 figures, AAMAS 201

    Finding a Collective Set of Items: From Proportional Multirepresentation to Group Recommendation

    Full text link
    We consider the following problem: There is a set of items (e.g., movies) and a group of agents (e.g., passengers on a plane); each agent has some intrinsic utility for each of the items. Our goal is to pick a set of KK items that maximize the total derived utility of all the agents (i.e., in our example we are to pick KK movies that we put on the plane's entertainment system). However, the actual utility that an agent derives from a given item is only a fraction of its intrinsic one, and this fraction depends on how the agent ranks the item among the chosen, available, ones. We provide a formal specification of the model and provide concrete examples and settings where it is applicable. We show that the problem is hard in general, but we show a number of tractability results for its natural special cases

    Comparing Election Methods Where Each Voter Ranks Only Few Candidates

    Full text link
    Election rules are formal processes that aggregate voters preferences, typically to select a single candidate, called the winner. Most of the election rules studied in the literature require the voters to rank the candidates from the most to the least preferred one. This method of eliciting preferences is impractical when the number of candidates to be ranked is large. We ask how well certain election rules (focusing on positional scoring rules and the Minimax rule) can be approximated from partial preferences collected through one of the following procedures: (i) randomized-we ask each voter to rank a random subset of \ell candidates, and (ii) deterministic-we ask each voter to provide a ranking of her \ell most preferred candidates (the \ell-truncated ballot). We establish theoretical bounds on the approximation ratios and we complement our theoretical analysis with computer simulations. We find that mostly (apart from the cases when the preferences have no or very little structure) it is better to use the randomized approach. While we obtain fairly good approximation guarantees for the Borda rule already for =2\ell = 2, for approximating the Minimax rule one needs to ask each voter to compare a larger set of candidates in order to obtain good guarantees
    corecore