5,101 research outputs found

    On the Parameterized Complexity of Grid Contraction

    Get PDF
    For a family of graphs ?, the ?-Contraction problem takes as an input a graph G and an integer k, and the goal is to decide if there exists F ? E(G) of size at most k such that G/F belongs to ?. Here, G/F is the graph obtained from G by contracting all the edges in F. In this article, we initiate the study of Grid Contraction from the parameterized complexity point of view. We present a fixed parameter tractable algorithm, running in time c^k ? |V(G)|^{{O}(1)}, for this problem. We complement this result by proving that unless ETH fails, there is no algorithm for Grid Contraction with running time c^{o(k)} ? |V(G)|^{{O}(1)}. We also present a polynomial kernel for this problem

    Bidimensionality of Geometric Intersection Graphs

    Full text link
    Let B be a finite collection of geometric (not necessarily convex) bodies in the plane. Clearly, this class of geometric objects naturally generalizes the class of disks, lines, ellipsoids, and even convex polygons. We consider geometric intersection graphs GB where each body of the collection B is represented by a vertex, and two vertices of GB are adjacent if the intersection of the corresponding bodies is non-empty. For such graph classes and under natural restrictions on their maximum degree or subgraph exclusion, we prove that the relation between their treewidth and the maximum size of a grid minor is linear. These combinatorial results vastly extend the applicability of all the meta-algorithmic results of the bidimensionality theory to geometrically defined graph classes

    Beyond Bidimensionality: Parameterized Subexponential Algorithms on Directed Graphs

    Get PDF
    We develop two different methods to achieve subexponential time parameterized algorithms for problems on sparse directed graphs. We exemplify our approaches with two well studied problems. For the first problem, {\sc kk-Leaf Out-Branching}, which is to find an oriented spanning tree with at least kk leaves, we obtain an algorithm solving the problem in time 2O(klogk)n+nO(1)2^{O(\sqrt{k} \log k)} n+ n^{O(1)} on directed graphs whose underlying undirected graph excludes some fixed graph HH as a minor. For the special case when the input directed graph is planar, the running time can be improved to 2O(k)n+nO(1)2^{O(\sqrt{k})}n + n^{O(1)}. The second example is a generalization of the {\sc Directed Hamiltonian Path} problem, namely {\sc kk-Internal Out-Branching}, which is to find an oriented spanning tree with at least kk internal vertices. We obtain an algorithm solving the problem in time 2O(klogk)+nO(1)2^{O(\sqrt{k} \log k)} + n^{O(1)} on directed graphs whose underlying undirected graph excludes some fixed apex graph HH as a minor. Finally, we observe that for any ϵ>0\epsilon>0, the {\sc kk-Directed Path} problem is solvable in time O((1+ϵ)knf(ϵ))O((1+\epsilon)^k n^{f(\epsilon)}), where ff is some function of \ve. Our methods are based on non-trivial combinations of obstruction theorems for undirected graphs, kernelization, problem specific combinatorial structures and a layering technique similar to the one employed by Baker to obtain PTAS for planar graphs

    Robust Adaptive Control Barrier Functions: An Adaptive & Data-Driven Approach to Safety (Extended Version)

    Full text link
    A new framework is developed for control of constrained nonlinear systems with structured parametric uncertainties. Forward invariance of a safe set is achieved through online parameter adaptation and data-driven model estimation. The new adaptive data-driven safety paradigm is merged with a recent adaptive control algorithm for systems nominally contracting in closed-loop. This unification is more general than other safety controllers as closed-loop contraction does not require the system be invertible or in a particular form. Additionally, the approach is less expensive than nonlinear model predictive control as it does not require a full desired trajectory, but rather only a desired terminal state. The approach is illustrated on the pitch dynamics of an aircraft with uncertain nonlinear aerodynamics.Comment: Added aCBF non-Lipschitz example and discussion on approach implementatio
    corecore