181 research outputs found

    A Domain-Specific Language and Editor for Parallel Particle Methods

    Full text link
    Domain-specific languages (DSLs) are of increasing importance in scientific high-performance computing to reduce development costs, raise the level of abstraction and, thus, ease scientific programming. However, designing and implementing DSLs is not an easy task, as it requires knowledge of the application domain and experience in language engineering and compilers. Consequently, many DSLs follow a weak approach using macros or text generators, which lack many of the features that make a DSL a comfortable for programmers. Some of these features---e.g., syntax highlighting, type inference, error reporting, and code completion---are easily provided by language workbenches, which combine language engineering techniques and tools in a common ecosystem. In this paper, we present the Parallel Particle-Mesh Environment (PPME), a DSL and development environment for numerical simulations based on particle methods and hybrid particle-mesh methods. PPME uses the meta programming system (MPS), a projectional language workbench. PPME is the successor of the Parallel Particle-Mesh Language (PPML), a Fortran-based DSL that used conventional implementation strategies. We analyze and compare both languages and demonstrate how the programmer's experience can be improved using static analyses and projectional editing. Furthermore, we present an explicit domain model for particle abstractions and the first formal type system for particle methods.Comment: Submitted to ACM Transactions on Mathematical Software on Dec. 25, 201

    Distributed simulation optimization and parameter exploration framework for the cloud

    Get PDF
    Simulation models are becoming an increasingly popular tool for the analysis and optimization of complex real systems in different fields. Finding an optimal system design requires performing a large sweep over the parameter space in an organized way. Hence, the model optimization process is extremely demanding from a computational point of view, as it requires careful, time-consuming, complex orchestration of coordinated executions. In this paper, we present the design of SOF (Simulation Optimization and exploration Framework in the cloud), a framework which exploits the computing power of a cloud computational environment in order to carry out effective and efficient simulation optimization strategies. SOF offers several attractive features. Firstly, SOF requires “zero configuration” as it does not require any additional software installed on the remote node; only standard Apache Hadoop and SSH access are sufficient. Secondly, SOF is transparent to the user, since the user is totally unaware that the system operates on a distributed environment. Finally, SOF is highly customizable and programmable, since it enables the running of different simulation optimization scenarios using diverse programming languages – provided that the hosting platform supports them – and different simulation toolkits, as developed by the modeler. The tool has been fully developed and is available on a public repository1 under the terms of the open source Apache License. It has been tested and validated on several private platforms, such as a dedicated cluster of workstations, as well as on public platforms, including the Hortonworks Data Platform and Amazon Web Services Elastic MapReduce solution

    A CyberGIS Integration and Computation Framework for High‐Resolution Continental‐Scale Flood Inundation Mapping

    Get PDF
    We present a Digital Elevation Model (DEM)-based hydrologic analysis methodology for continental flood inundation mapping (CFIM), implemented as a cyberGIS scientific workflow in which a 1/3rd arc-second (10m) Height Above Nearest Drainage (HAND) raster data for the conterminous U.S. (CONUS) was computed and employed for subsequent inundation mapping. A cyberGIS framework was developed to enable spatiotemporal integration and scalable computing of the entire inundation mapping process on a hybrid supercomputing architecture. The first 1/3rd arc-second CONUS HAND raster dataset was computed in 1.5 days on the CyberGIS ROGER supercomputer. The inundation mapping process developed in our exploratory study couples HAND with National Water Model (NWM) forecast data to enable near real-time inundation forecasts for CONUS. The computational performance of HAND and the inundation mapping process was profiled to gain insights into the computational characteristics in high-performance parallel computing scenarios. The establishment of the CFIM computational framework has broad and significant research implications that may lead to further development and improvement of flood inundation mapping methodologies

    Proceedings of the 3rd Workshop on Domain-Specific Language Design and Implementation (DSLDI 2015)

    Full text link
    The goal of the DSLDI workshop is to bring together researchers and practitioners interested in sharing ideas on how DSLs should be designed, implemented, supported by tools, and applied in realistic application contexts. We are both interested in discovering how already known domains such as graph processing or machine learning can be best supported by DSLs, but also in exploring new domains that could be targeted by DSLs. More generally, we are interested in building a community that can drive forward the development of modern DSLs. These informal post-proceedings contain the submitted talk abstracts to the 3rd DSLDI workshop (DSLDI'15), and a summary of the panel discussion on Language Composition

    Virtual Reality Integration on Tomo-GPU System

    Get PDF
    With the ever-greater creation of data, new ways to extract information from it in faster ways is a subject of great interest to the scientific community in general and any entity that may benefit with the interpretation of data. Virtual reality, although not a recent discovery only now is becoming broadly available and driving new state of the art designs and implementations. Nonetheless, already existing results, provide positive feedback of virtual reality on some cases of data visualization. One of the scientific areas that may benefit from virtual reality technology visualization is the scientific field of material sciences. A current project of FCT is the Tomo-GPU system that was developed to aid the material scientists in processing and visualizing their data. This work focuses on the integration of a virtual reality visualization on the Tomo-GPU system to aid material scientist in interpreting their data more efficiently

    3D Lagrangian VPM: simulations of the near-wake of an actuator disc and horizontal axis wind turbine

    Get PDF
    The application of a 3-dimensional Lagrangian vortex particle method has been assessed for modelling the near-wake of an axisymmetrical actuator disc and 3-bladed horizontal axis wind turbine with prescribed circulation from the MEXICO (Model EXperiments In COntrolled conditions) experiment. The method was developed in the framework of the open- source Parallel Particle-Mesh library for handling the efficient data-parallelism on a CPU (Central Processing Unit) cluster, and utilized a O(N log N)-type fast multipole method for computational acceleration. Simulations with the actuator disc resulted in a wake expansion, velocity deficit profile, and induction factor that showed a close agreement with theoretical, numerical, and experimental results from literature. Also the shear layer expansion was present; the Kelvin-Helmholtz instability in the shear layer was triggered due to the round-off limitations of a numerical method, but this instability was delayed to beyond 1 diameter downstream due to the particle smoothing. Simulations with the 3-bladed turbine demonstrated that a purely 3-dimensional flow representation is challenging to model with particles. The manifestation of local complex flow structures of highly stretched vortices made the simulation unstable, but this was successfully counteracted by the application of a particle strength exchange scheme. The axial and radial velocity profile over the near wake have been compared to that of the original MEXICO experiment, which showed close agreement between results
    • 

    corecore