3,056 research outputs found

    On the Complexity of Local Search for Weighted Standard Set Problems

    Full text link
    In this paper, we study the complexity of computing locally optimal solutions for weighted versions of standard set problems such as SetCover, SetPacking, and many more. For our investigation, we use the framework of PLS, as defined in Johnson et al., [JPY88]. We show that for most of these problems, computing a locally optimal solution is already PLS-complete for a simple neighborhood of size one. For the local search versions of weighted SetPacking and SetCover, we derive tight bounds for a simple neighborhood of size two. To the best of our knowledge, these are one of the very few PLS results about local search for weighted standard set problems

    An Efficient Local Search for Partial Latin Square Extension Problem

    Full text link
    A partial Latin square (PLS) is a partial assignment of n symbols to an nxn grid such that, in each row and in each column, each symbol appears at most once. The partial Latin square extension problem is an NP-hard problem that asks for a largest extension of a given PLS. In this paper we propose an efficient local search for this problem. We focus on the local search such that the neighborhood is defined by (p,q)-swap, i.e., removing exactly p symbols and then assigning symbols to at most q empty cells. For p in {1,2,3}, our neighborhood search algorithm finds an improved solution or concludes that no such solution exists in O(n^{p+1}) time. We also propose a novel swap operation, Trellis-swap, which is a generalization of (1,q)-swap and (2,q)-swap. Our Trellis-neighborhood search algorithm takes O(n^{3.5}) time to do the same thing. Using these neighborhood search algorithms, we design a prototype iterated local search algorithm and show its effectiveness in comparison with state-of-the-art optimization solvers such as IBM ILOG CPLEX and LocalSolver.Comment: 17 pages, 2 figure

    Enhancing Physical Layer Security in AF Relay Assisted Multi-Carrier Wireless Transmission

    Full text link
    In this paper, we study the physical layer security (PLS) problem in the dual hop orthogonal frequency division multiplexing (OFDM) based wireless communication system. First, we consider a single user single relay system and study a joint power optimization problem at the source and relay subject to individual power constraint at the two nodes. The aim is to maximize the end to end secrecy rate with optimal power allocation over different sub-carriers. Later, we consider a more general multi-user multi-relay scenario. Under high SNR approximation for end to end secrecy rate, an optimization problem is formulated to jointly optimize power allocation at the BS, the relay selection, sub-carrier assignment to users and the power loading at each of the relaying node. The target is to maximize the overall security of the system subject to independent power budget limits at each transmitting node and the OFDMA based exclusive sub-carrier allocation constraints. A joint optimization solution is obtained through duality theory. Dual decomposition allows to exploit convex optimization techniques to find the power loading at the source and relay nodes. Further, an optimization for power loading at relaying nodes along with relay selection and sub carrier assignment for the fixed power allocation at the BS is also studied. Lastly, a sub-optimal scheme that explores joint power allocation at all transmitting nodes for the fixed subcarrier allocation and relay assignment is investigated. Finally, simulation results are presented to validate the performance of the proposed schemes.Comment: 10 pages, 7 figures, accepted in Transactions on Emerging Telecommunications Technologies (ETT), formerly known as European Transactions on Telecommunications (ETT

    The complexity of counting locally maximal satisfying assignments of Boolean CSPs

    Get PDF
    We investigate the computational complexity of the problem of counting the maximal satisfying assignments of a Constraint Satisfaction Problem (CSP) over the Boolean domain {0,1}. A satisfying assignment is maximal if any new assignment which is obtained from it by changing a 0 to a 1 is unsatisfying. For each constraint language Gamma, #MaximalCSP(Gamma) denotes the problem of counting the maximal satisfying assignments, given an input CSP with constraints in Gamma. We give a complexity dichotomy for the problem of exactly counting the maximal satisfying assignments and a complexity trichotomy for the problem of approximately counting them. Relative to the problem #CSP(Gamma), which is the problem of counting all satisfying assignments, the maximal version can sometimes be easier but never harder. This finding contrasts with the recent discovery that approximately counting maximal independent sets in a bipartite graph is harder (under the usual complexity-theoretic assumptions) than counting all independent sets.Comment: V2 adds contextual material relating the results obtained here to earlier work in a different but related setting. The technical content is unchanged. V3 (this version) incorporates minor revisions. The title has been changed to better reflect what is novel in this work. This version has been accepted for publication in Theoretical Computer Science. 19 page

    A Mobile Satellite Experiment (MSAT-X) network definition

    Get PDF
    The network architecture development of the Mobile Satellite Experiment (MSAT-X) project for the past few years is described. The results and findings of the network research activities carried out under the MSAT-X project are summarized. A framework is presented upon which the Mobile Satellite Systems (MSSs) operator can design a commercial network. A sample network configuration and its capability are also included under the projected scenario. The Communication Interconnection aspect of the MSAT-X network is discussed. In the MSAT-X network structure two basic protocols are presented: the channel access protocol, and the link connection protocol. The error-control techniques used in the MSAT-X project and the packet structure are also discussed. A description of two testbeds developed for experimentally simulating the channel access protocol and link control protocol, respectively, is presented. A sample network configuration and some future network activities of the MSAT-X project are also presented
    • …
    corecore