1,043 research outputs found

    On the Outage Probability of Localization in Randomly Deployed Wireless Networks

    Get PDF
    This paper analyzes the localization outage probability (LOP), the probability that the position error exceeds a given threshold, in randomly deployed wireless networks. Two typical cases are considered: a mobile agent uses all the neighboring anchors or select the best pair of anchors for self-localization. We derive the exact LOP for the former case and tight bounds for the LOP for the latter case. The comparison between the two cases reveals the advantage of anchor selection in terms of LOP versus complexity tradeoff, providing insights into the design of efficient localization systems

    Effects of Spatial Randomness on Locating a Point Source with Distributed Sensors

    Full text link
    Most studies that consider the problem of estimating the location of a point source in wireless sensor networks assume that the source location is estimated by a set of spatially distributed sensors, whose locations are fixed. Motivated by the fact that the observation quality and performance of the localization algorithm depend on the location of the sensors, which could be randomly distributed, this paper investigates the performance of a recently proposed energy-based source-localization algorithm under the assumption that the sensors are positioned according to a uniform clustering process. Practical considerations such as the existence and size of the exclusion zones around each sensor and the source will be studied. By introducing a novel performance measure called the estimation outage, it will be shown how parameters related to the network geometry such as the distance between the source and the closest sensor to it as well as the number of sensors within a region surrounding the source affect the localization performance.Comment: 7 Pages, 5 Figures, To appear at the 2014 IEEE International Conference on Communications (ICC'14) Workshop on Advances in Network Localization and Navigation (ANLN), Invited Pape

    Magneto-inductive Passive Relaying in Arbitrarily Arranged Networks

    Full text link
    We consider a wireless sensor network that uses inductive near-field coupling for wireless powering or communication, or for both. The severely limited range of an inductively coupled source-destination pair can be improved using resonant relay devices, which are purely passive in nature. Utilization of such magneto-inductive relays has only been studied for regular network topologies, allowing simplified assumptions on the mutual antenna couplings. In this work we present an analysis of magneto-inductive passive relaying in arbitrarily arranged networks. We find that the resulting channel has characteristics similar to multipath fading: the channel power gain is governed by a non-coherent sum of phasors, resulting in increased frequency selectivity. We propose and study two strategies to increase the channel power gain of random relay networks: i) deactivation of individual relays by open-circuit switching and ii) frequency tuning. The presented results show that both methods improve the utilization of available passive relays, leading to reliable and significant performance gains.Comment: 6 pages, 9 figures. To be presented at the IEEE International Conference on Communications (ICC), Paris, France, May 201

    Theoretical Issues in Modeling of Large-Scale Wireless Sensor Networks

    Get PDF

    Distributed Detection and Estimation in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSNs) are typically formed by a large number of densely deployed, spatially distributed sensors with limited sensing, computing, and communication capabilities that cooperate with each other to achieve a common goal. In this dissertation, we investigate the problem of distributed detection, classification, estimation, and localization in WSNs. In this context, the sensors observe the conditions of their surrounding environment, locally process their noisy observations, and send the processed data to a central entity, known as the fusion center (FC), through parallel communication channels corrupted by fading and additive noise. The FC will then combine the received information from the sensors to make a global inference about the underlying phenomenon, which can be either the detection or classification of a discrete variable or the estimation of a continuous one.;In the domain of distributed detection and classification, we propose a novel scheme that enables the FC to make a multi-hypothesis classification of an underlying hypothesis using only binary detections of spatially distributed sensors. This goal is achieved by exploiting the relationship between the influence fields characterizing different hypotheses and the accumulated noisy versions of local binary decisions as received by the FC, where the influence field of a hypothesis is defined as the spatial region in its surrounding in which it can be sensed using some sensing modality. In the realm of distributed estimation and localization, we make four main contributions: (a) We first formulate a general framework that estimates a vector of parameters associated with a deterministic function using spatially distributed noisy samples of the function for both analog and digital local processing schemes. ( b) We consider the estimation of a scalar, random signal at the FC and derive an optimal power-allocation scheme that assigns the optimal local amplification gains to the sensors performing analog local processing. The objective of this optimized power allocation is to minimize the L 2-norm of the vector of local transmission powers, given a maximum estimation distortion at the FC. We also propose a variant of this scheme that uses a limited-feedback strategy to eliminate the requirement of perfect feedback of the instantaneous channel fading coefficients from the FC to local sensors through infinite-rate, error-free links. ( c) We propose a linear spatial collaboration scheme in which sensors collaborate with each other by sharing their local noisy observations. We derive the optimal set of coefficients used to form linear combinations of the shared noisy observations at local sensors to minimize the total estimation distortion at the FC, given a constraint on the maximum average cumulative transmission power in the entire network. (d) Using a novel performance measure called the estimation outage, we analyze the effects of the spatial randomness of the location of the sensors on the quality and performance of localization algorithms by considering an energy-based source-localization scheme under the assumption that the sensors are positioned according to a uniform clustering process
    • …
    corecore