149 research outputs found

    On the outage performance of SWIPT based three-step two-way DF relay networks

    Get PDF
    In this paper, we study the outage performance of simultaneous wireless information and power transfer (SWIPT) based three-step two-way decode-and-forward (DF) relay networks, where both power-splitting (PS) and "harvest-thenforward" are employed. In particular, we derive the expressions of terminal-to-terminal (T2T) and system outage probabilities based on a Gaussian-Chebyshev quadrature approximation, and obtain the T2T and system outage capacities. The effects of various system parameters, e.g., the static power allocation ratio at the relay, symmetric PS, as well as asymmetric PS, on the outage performance of the investigated network are examined. It is shown that our derived expression for T2T outage capacity is more accurate than existing analytical results, and that the asymmetric PS achieves a higher system outage capacity than the symmetric one when the channels between the relay node and the terminal nodes have different statistic gains

    Heterogeneous Power-Splitting Based Two-Way DF Relaying with Non-Linear Energy Harvesting

    Full text link
    Simultaneous wireless information and power transfer (SWIPT) has been recognized as a promising approach to improving the performance of energy constrained networks. In this paper, we investigate a SWIPT based three-step two-way decode-and-forward (DF) relay network with a non-linear energy harvester equipped at the relay. As most existing works require instantaneous channel state information (CSI) while CSI is not fully utilized when designing power splitting (PS) schemes, there exists an opportunity for enhancement by exploiting CSI for PS design. To this end, we propose a novel heterogeneous PS scheme, where the PS ratios are dynamically changed according to instantaneous channel gains. In particular, we derive the closed-form expressions of the optimal PS ratios to maximize the capacity of the investigated network and analyze the outage probability with the optimal dynamic PS ratios based on the non-linear energy harvesting (EH) model. The results provide valuable insights into the effect of various system parameters, such as transmit power of the source, source transmission rate, and source to relay distance on the performance of the investigated network. The results show that our proposed PS scheme outperforms the existing schemes.Comment: This article has been accepted by IEEE GLOBECOM201

    Multi-source in DF cooperative networks with the PSR protocol based full-duplex energy harvesting over a Rayleigh fading channel: performance analysis

    Get PDF
    Due to the tremendous energy consumption growth with ever-increasing connected devices, alternative wireless information and power transfer techniques are important not only for theoretical research but also for saving operational costs and for a sustainable growth of wireless communications. In this paper, we investigate the multi-source in decode-and-forward cooperative networks with the power splitting protocol based full-duplex energy harvesting relaying network over a Rayleigh fading channel. In this system model, the multi-source and the destination communicate with each other by both the direct link and an intermediate helping relay. First, we investigate source selection for the best system performance. Then, the closed-form expression of the outage probability and the symbol error ratio are derived. Finally, the Monte Carlo simulation is used for validating the analytical expressions in connection with all main possible system parameters. The research results show that the analytical and simulation results matched well with each other.Web of Science68327526

    Wireless-Powered Communication Assisted by Two-Way Relay with Interference Alignment Underlaying Cognitive Radio Network

    Full text link
    This study investigates the outage performance of an under-laying wireless-powered secondary system that reuses the primary users (PU) spectrum in a multiple-input multiple-output (MIMO) cognitive radio (CR) network. Each secondary user (SU) harvests energy and receives information simultaneously by applying power splitting (PS) protocol. The communication between SUs is aided by a two-way (TW) decode and forward (DF) relay. We formulate a problem to design the PS ratios at SUs, the power control factor at the secondary relay, and beamforming matrices at all nodes to minimize the secondary network's outage probability. To address this problem, we propose a two-step solution. The first step establishes closedform expressions for the PS ratios at each SU and secondary relay's power control factor. Furthermore, in the second step, interference alignment (IA) is used to design proper precoding and decoding matrices for managing the interference between secondary and primary networks. We choose IA matrices based on the minimum mean square error (MMSE) iterative algorithm. The simulation results demonstrate a significant decrease in the outage probability for the proposed scheme compared to the benchmark schemes, with an average reduction of more than two orders of magnitude achieved

    Outage probability analysis for hybrid TSR-PSR based SWIPT systems over log-normal fading channels

    Get PDF
    Employing simultaneous information and power transfer (SWIPT) technology in cooperative relaying networks has drawn considerable attention from the research community. We can find several studies that focus on Rayleigh and Nakagami-m fading channels, which are used to model outdoor scenarios. Differing itself from several existing studies, this study is conducted in the context of indoor scenario modelled by log-normal fading channels. Specifically, we investigate a so-called hybrid time switching relaying (TSR)-power splitting relaying (PSR) protocol in an energy-constrained cooperative amplify-and-forward (AF) relaying network. We evaluate the system performance with outage probability (OP) by analytically expressing and simulating it with Monte Carlo method. The impact of power-splitting (PS), time-switching (TS) and signal-to-noise ratio (SNR) on the OP was as well investigated. Subsequently, the system performance of TSR, PSR and hybrid TSR-PSR schemes were compared. The simulation results are relatively accurate because they align well with the theory
    corecore