14 research outputs found

    On Polynomial-Time Decidability of k-Negations Fragments of FO Theories (Extended Abstract)

    Get PDF
    This paper introduces a generic framework that provides sufficient conditions for guaranteeing polynomial-time decidability of fixed-negation fragments of first-order theories that adhere to certain fixed-parameter tractability requirements. It enables deciding sentences of such theories with arbitrary existential quantification, conjunction and a fixed number of negation symbols in polynomial time. It was recently shown by Nguyen and Pak [SIAM J. Comput. 51(2): 1-31 (2022)] that an even more restricted such fragment of Presburger arithmetic (the first-order theory of the integers with addition and order) is NP-hard. In contrast, by application of our framework, we show that the fixed negation fragment of weak Presburger arithmetic, which drops the order relation from Presburger arithmetic in favour of equality, is decidable in polynomial time

    Type-theoretic logic with an operational account of intensionality

    Get PDF
    We formulate a Curry-typed logic with fine-grained intensionality within Turner?s typed predicate logic. This allows for an elegant presentation of a theory that corresponds to Fox and Lappin?s property theory with curry typing, but without the need for a federation of languages. We then consider how the fine-grained intensionality of this theory can be given an operational interpretation. This interpretation suggests itself as expressions in the theory can be viewed as terms in the untyped lambda-calculus, which provides a model of computation

    Veech groups without parabolic elements

    Full text link
    We prove that a ``bouillabaisse'' surface (translation surface which has two transverse parabolic elements) has totally real trace field. As a corollary, non trivial Veech groups which have no parabolic elements do exist. The proof follows Veech's viewpoint on Thurston's construction of pseudo-Anosov diffeomorphisms.Comment: 7 pages, Corrected typos, to appear in Duke Mathematical Journa

    MAXIMAL SUBSETS OF PAIRWISE SUMMABLE ELEMENTS IN GENERALIZED EFFECT ALGEBRAS

    Get PDF
    We show that in any generalized effect algebra (G;⊕, 0) a maximal pairwise summable subset is a sub-generalized effect algebra of (G;⊕, 0), called a summability block. If G is lattice ordered, then every summability block in G is a generalized MV-effect algebra. Moreover, if every element of G has an infinite isotropic index, then G is covered by its summability blocks, which are generalized MV-effect algebras in the case that G is lattice ordered. We also present the relations between summability blocks and compatibility blocks of G. Counterexamples, to obtain the required contradictions in some cases, are given

    MAXIMAL SUBSETS OF PAIRWISE SUMMABLE ELEMENTS IN GENERALIZED EFFECT ALGEBRAS

    Get PDF
    We show that in any generalized effect algebra (G;⊕, 0) a maximal pairwise summable subset is a sub-generalized effect algebra of (G;⊕, 0), called a summability block. If G is lattice ordered, then every summability block in G is a generalized MV-effect algebra. Moreover, if every element of G has an infinite isotropic index, then G is covered by its summability blocks, which are generalized MV-effect algebras in the case that G is lattice ordered. We also present the relations between summability blocks and compatibility blocks of G. Counterexamples, to obtain the required contradictions in some cases, are given

    Sense and the Computation of Reference

    Get PDF
    The paper shows how ideas that explain the sense of an expression as a method or algorithm for finding its reference, preshadowed in Frege's dictum that sense is the way in which a referent is given, can be formalized on the basis of the ideas in Thomason (1980). To this end, the function that sends propositions to truth values or sets of possible worlds in Thomason (1980) must be replaced by a relation and the meaning postulates governing the behaviour of this relation must be given in the form of a *logic program*. The resulting system does not only throw light on the properties of sense and their relation to computation, but also shows circular behaviour if some ingredients of the Liar Paradox are added. The connection is natural, as algorithms can be inherently circular and the Liar is explained as expressing one of those. Many ideas in the present paper are closely related to those in Moschovakis (1994), but receive a considerably lighter formalization
    corecore