44 research outputs found

    On the Optimality of Power Allocation for NOMA Downlinks with Individual QoS Constraints

    Get PDF
    This letter investigates a power allocation problem in a downlink single-input single-output non-orthogonal multiple access (NOMA) system. Our goal is to maximize the sum rate of users subject to minimum user rate requirements. We rigorously prove the optimal user decoding order, and show that the sum rate maximization problem is convex, which guarantees the globally optimal solution. Numerical results validate the performance gain by the proposed NOMA compared with conventional schemes

    Low-complexity joint user and power scheduling in downlink NOMA over fading channels

    Full text link
    Non-orthogonal multiple access (NOMA) has been considered one of the most promising radio access techniques for next-generation cellular networks. In this paper, we study the joint user and power scheduling for downlink NOMA over fading channels. Specifically, we focus on a stochastic optimization problem to maximize the weighted average sum rate while ensuring given minimum average data rates of users. To address this problem, we first develop an opportunistic user and power scheduling algorithm (OUPS) based on the duality and stochastic optimization theory. By OUPS, the stochastic problem is transformed into a series of deterministic ones for the instantaneous weighted sum rate maximization for each slot. Thus, we additionally develop a heuristic algorithm with very low computational complexity, called user selection and power allocation algorithm (USPA), for the instantaneous weighted sum rate maximization problem. Via simulation results, we demonstrate that USPA provides near-optimal performance with very low computational complexity, and OUPS well guarantees given minimum average data rates.Comment: 7 pages, 5 figure

    Precoded Chebyshev-NLMS based pre-distorter for nonlinear LED compensation in NOMA-VLC

    Get PDF
    Visible light communication (VLC) is one of the main technologies driving the future 5G communication systems due to its ability to support high data rates with low power consumption, thereby facilitating high speed green communications. To further increase the capacity of VLC systems, a technique called non-orthogonal multiple access (NOMA) has been suggested to cater to increasing demand for bandwidth, whereby users' signals are superimposed prior to transmission and detected at each user equipment using successive interference cancellation (SIC). Some recent results on NOMA exist which greatly enhance the achievable capacity as compared to orthogonal multiple access techniques. However, one of the performance-limiting factors affecting VLC systems is the nonlinear characteristics of a light emitting diode (LED). This paper considers the nonlinear LED characteristics in the design of pre-distorter for cognitive radio inspired NOMA in VLC, and proposes singular value decomposition based Chebyshev precoding to improve performance of nonlinear multiple-input multiple output NOMA-VLC. A novel and generalized power allocation strategy is also derived in this work, which is valid even in scenarios when users experience similar channels. Additionally, in this work, analytical upper bounds for the bit error rate of the proposed detector are derived for square MM-quadrature amplitude modulation.Comment: R. Mitra and V. Bhatia are with Indian Institute of Technology Indore, Indore-453552, India, Email:[email protected], [email protected]. This work was submitted to IEEE Transactions on Communications on October 26, 2016, decisioned on March 3, 2017, and revised on April 25, 2017, and is currently under review in IEEE Transactions on Communication

    Lens-Based Millimeter Wave Reconfigurable Antenna NOMA

    Get PDF
    This paper proposes a new multiple access technique based on the millimeter wave lens-based reconfigurable antenna systems. In particular, to support a large number of groups of users with different angles of departures (AoDs), we integrate recently proposed reconfigurable antenna multiple access (RAMA) into non-orthogonal multiple access (NOMA). The proposed technique, named reconfigurable antenna NOMA (RA-NOMA), divides the users with respect to their AoDs and channel gains. Users with different AoDs and comparable channel gains are served via RAMA while users with the same AoDs but different channel gains are served via NOMA. This technique results in the independence of the number of radio frequency chains from the number of NOMA groups. Further, we derive the feasibility conditions and show that the power allocation for RA-NOMA is a convex problem. We then derive the maximum achievable sum-rate of RA-NOMA. Simulation results show that RA-NOMA outperforms conventional orthogonal multiple access (OMA) as well as the combination of RAMA with the OMA techniques
    corecore