655 research outputs found

    Trisections of a 3-rotationally symmetric planar convex body minimizing the maximum relative diameter

    Get PDF
    In this work we study the fencing problem consisting of finnding a trisection of a 3-rotationally symmetric planar convex body which minimizes the maximum relative diameter. We prove that an optimal solution is given by the so-called standard trisection. We also determine the optimal set giving the minimum value for this functional and study the corresponding universal lower bound.Comment: Preliminary version, 20 pages, 15 figure

    Γ\Gamma-limit of the cut functional on dense graph sequences

    Get PDF
    A sequence of graphs with diverging number of nodes is a dense graph sequence if the number of edges grows approximately as for complete graphs. To each such sequence a function, called graphon, can be associated, which contains information about the asymptotic behavior of the sequence. Here we show that the problem of subdividing a large graph in communities with a minimal amount of cuts can be approached in terms of graphons and the Γ\Gamma-limit of the cut functional, and discuss the resulting variational principles on some examples. Since the limit cut functional is naturally defined on Young measures, in many instances the partition problem can be expressed in terms of the probability that a node belongs to one of the communities. Our approach can be used to obtain insights into the bisection problem for large graphs, which is known to be NP-complete.Comment: 25 pages, 5 figure

    ColDICE: a parallel Vlasov-Poisson solver using moving adaptive simplicial tessellation

    Full text link
    Resolving numerically Vlasov-Poisson equations for initially cold systems can be reduced to following the evolution of a three-dimensional sheet evolving in six-dimensional phase-space. We describe a public parallel numerical algorithm consisting in representing the phase-space sheet with a conforming, self-adaptive simplicial tessellation of which the vertices follow the Lagrangian equations of motion. The algorithm is implemented both in six- and four-dimensional phase-space. Refinement of the tessellation mesh is performed using the bisection method and a local representation of the phase-space sheet at second order relying on additional tracers created when needed at runtime. In order to preserve in the best way the Hamiltonian nature of the system, refinement is anisotropic and constrained by measurements of local Poincar\'e invariants. Resolution of Poisson equation is performed using the fast Fourier method on a regular rectangular grid, similarly to particle in cells codes. To compute the density projected onto this grid, the intersection of the tessellation and the grid is calculated using the method of Franklin and Kankanhalli (1993) generalised to linear order. As preliminary tests of the code, we study in four dimensional phase-space the evolution of an initially small patch in a chaotic potential and the cosmological collapse of a fluctuation composed of two sinusoidal waves. We also perform a "warm" dark matter simulation in six-dimensional phase-space that we use to check the parallel scaling of the code.Comment: Code and illustration movies available at: http://www.vlasix.org/index.php?n=Main.ColDICE - Article submitted to Journal of Computational Physic
    corecore