51 research outputs found

    OBDD-Based Representation of Interval Graphs

    Full text link
    A graph G=(V,E)G = (V,E) can be described by the characteristic function of the edge set χE\chi_E which maps a pair of binary encoded nodes to 1 iff the nodes are adjacent. Using \emph{Ordered Binary Decision Diagrams} (OBDDs) to store χE\chi_E can lead to a (hopefully) compact representation. Given the OBDD as an input, symbolic/implicit OBDD-based graph algorithms can solve optimization problems by mainly using functional operations, e.g. quantification or binary synthesis. While the OBDD representation size can not be small in general, it can be provable small for special graph classes and then also lead to fast algorithms. In this paper, we show that the OBDD size of unit interval graphs is O( V /log V )O(\ | V \ | /\log \ | V \ |) and the OBDD size of interval graphs is $O(\ | V \ | \log \ | V \ |)whichbothimproveaknownresultfromNunkesserandWoelfel(2009).Furthermore,wecanshowthatusingourvariableorderandnodelabelingforintervalgraphstheworstcaseOBDDsizeis which both improve a known result from Nunkesser and Woelfel (2009). Furthermore, we can show that using our variable order and node labeling for interval graphs the worst-case OBDD size is \Omega(\ | V \ | \log \ | V \ |).Weusethestructureoftheadjacencymatricestoprovethesebounds.Thismethodmaybeofindependentinterestandcanbeappliedtoothergraphclasses.Wealsodevelopamaximummatchingalgorithmonunitintervalgraphsusing. We use the structure of the adjacency matrices to prove these bounds. This method may be of independent interest and can be applied to other graph classes. We also develop a maximum matching algorithm on unit interval graphs using O(\log \ | V \ |)operationsandacoloringalgorithmforunitandgeneralintervalsgraphsusing operations and a coloring algorithm for unit and general intervals graphs using O(\log^2 \ | V \ |)$ operations and evaluate the algorithms empirically.Comment: 29 pages, accepted for 39th International Workshop on Graph-Theoretic Concepts 201

    On OBDDs for CNFs of bounded treewidth

    Get PDF
    In this paper we show that a CNF cannot be compiled into an Ordered Binary Decision Diagram (OBDD) of fixed-parameter size parameterized by the primal graph treewidth of the input CNF. Thus we provide a parameterized separation between OBDDs and Sentential Decision Diagrams for which such fixed-parameter compilation is possible. We also show that the best existing parameterized upper bound for OBDDs in fact holds for the incidence graph treewidth parameterization

    On oblivious branching programs with bounded repetition that cannot efficiently compute CNFs of bounded treewidth

    Get PDF
    In this paper we study complexity of an extension of ordered binary decision diagrams (OBDDs) called c-OBDDs on CNFs of bounded (primal graph) treewidth. In particular, we show that for each k ≥ 3 there is a class of CNFs of treewidth k for which the equivalent c-OBDDs are of size Ω(nk/(8c−4)). Moreover, this lower bound holds if c-OBDDs are non-deterministic and semantic. Our second result uses the above lower bound to separate the above model from sentential decision diagrams (SDDs). In order to obtain the lower bound, we use a structural graph parameter called matching width. Our third result shows that matching width and pathwidth are linearly related

    Reordering Rule Makes OBDD Proof Systems Stronger

    Get PDF
    Atserias, Kolaitis, and Vardi showed that the proof system of Ordered Binary Decision Diagrams with conjunction and weakening, OBDD(^, weakening), simulates CP^* (Cutting Planes with unary coefficients). We show that OBDD(^, weakening) can give exponentially shorter proofs than dag-like cutting planes. This is proved by showing that the Clique-Coloring tautologies have polynomial size proofs in the OBDD(^, weakening) system. The reordering rule allows changing the variable order for OBDDs. We show that OBDD(^, weakening, reordering) is strictly stronger than OBDD(^, weakening). This is proved using the Clique-Coloring tautologies, and by transforming tautologies using coded permutations and orification. We also give CNF formulas which have polynomial size OBDD(^) proofs but require superpolynomial (actually, quasipolynomial size) resolution proofs, and thus we partially resolve an open question proposed by Groote and Zantema. Applying dag-like and tree-like lifting techniques to the mentioned results, we completely analyze which of the systems among CP^*, OBDD(^), OBDD(^, reordering), OBDD(^, weakening) and OBDD(^, weakening, reordering) polynomially simulate each other. For dag-like proof systems, some of our separations are quasipolynomial and some are exponential; for tree-like systems, all of our separations are exponential

    Cliquewidth and knowledge compilation

    Get PDF
    In this paper we study the role of cliquewidth in succinct representation of Boolean functions. Our main statement is the following: Let Z be a Boolean circuit having cliquewidth k. Then there is another circuit Z * computing the same function as Z having treewidth at most 18k + 2 and which has at most 4|Z| gates where |Z| is the number of gates of Z. In this sense, cliquewidth is not more ‘powerful’ than treewidth for the purpose of representation of Boolean functions. We believe this is quite a surprising fact because it contrasts the situation with graphs where an upper bound on the treewidth implies an upper bound on the cliquewidth but not vice versa. We demonstrate the usefulness of the new theorem for knowledge compilation. In particular, we show that a circuit Z of cliquewidth k can be compiled into a Decomposable Negation Normal Form (dnnf) of size O(918k k 2|Z|) and the same runtime. To the best of our knowledge, this is the first result on efficient knowledge compilation parameterized by cliquewidth of a Boolean circuit
    corecore