79,051 research outputs found

    On the numerical solution of a time-dependent shape optimization problem for the heat equation

    Get PDF
    This article is concerned with the solution of a time-dependent shape identification problem. Specifically we consider the heat equation in a domain, which contains a time-dependent inclusion of zero temperature. The objective is to detect this inclusion from the given temperature and heat flux at the exterior boundary of the domain. To this end, for a given temperature at the exterior boundary, the mismatch of the Neumann data is minimized. This time-dependent shape optimization problem is then solved by a gradient-based optimization method. Numerical results are presented which validate the present approach

    Optimization of current carrying multicables

    Get PDF
    High currents in cable bundles contribute to hotspot generation and overheating of essential car elements, especially in connecting structures. An important aspect in this context is the influence of the positioning of wires in cable harnesses. In order to find an appropriate multicable layout with minimized maximum temperatures, we formulate a corresponding optimization problem. Depending on the packing density of the cable bundle, it is solved via different optimization strategies: in case of loosely packed cable bundles solely by a gradient-based strategy (shape optimization), densely packed ones by arrangement heuristics combined with a standard genetic algorithm, others by mixed strategies. In the simulation model, temperature dependence of the electric conductor resistances and different parameter values for the multitude of subdomains are respected in the governing semilinear and piecewise defined equation. Convective and radiative effects are summarized by a heat transfer coefficient in a nonlinear boundary condition at the exterior multicable surface. Finite elements in combination with an interior-point method and a genetic algorithm allow the solution of the optimization problem for a large number of cable bundle types. Furthermore, we present an adjoint method for the solution of the shape optimization problem. The jumps at the interfaces of different materials are essential for the Hadamard representation of the shape gradient. Numerical experiments are carried out to demonstrate the feasibility and scope of the present approach

    A Method for Geometry Optimization in a Simple Model of Two-Dimensional Heat Transfer

    Full text link
    This investigation is motivated by the problem of optimal design of cooling elements in modern battery systems. We consider a simple model of two-dimensional steady-state heat conduction described by elliptic partial differential equations and involving a one-dimensional cooling element represented by a contour on which interface boundary conditions are specified. The problem consists in finding an optimal shape of the cooling element which will ensure that the solution in a given region is close (in the least squares sense) to some prescribed target distribution. We formulate this problem as PDE-constrained optimization and the locally optimal contour shapes are found using a gradient-based descent algorithm in which the Sobolev shape gradients are obtained using methods of the shape-differential calculus. The main novelty of this work is an accurate and efficient approach to the evaluation of the shape gradients based on a boundary-integral formulation which exploits certain analytical properties of the solution and does not require grids adapted to the contour. This approach is thoroughly validated and optimization results obtained in different test problems exhibit nontrivial shapes of the computed optimal contours.Comment: Accepted for publication in "SIAM Journal on Scientific Computing" (31 pages, 9 figures

    What is the optimal shape of a fin for one dimensional heat conduction?

    Get PDF
    This article is concerned with the shape of small devices used to control the heat flowing between a solid and a fluid phase, usually called \textsl{fin}. The temperature along a fin in stationary regime is modeled by a one-dimensional Sturm-Liouville equation whose coefficients strongly depend on its geometrical features. We are interested in the following issue: is there any optimal shape maximizing the heat flux at the inlet of the fin? Two relevant constraints are examined, by imposing either its volume or its surface, and analytical nonexistence results are proved for both problems. Furthermore, using specific perturbations, we explicitly compute the optimal values and construct maximizing sequences. We show in particular that the optimal heat flux at the inlet is infinite in the first case and finite in the second one. Finally, we provide several extensions of these results for more general models of heat conduction, as well as several numerical illustrations

    Inverse Design Based on Nonlinear Thermoelastic Material Models Applied to Injection Molding

    Full text link
    This paper describes an inverse shape design method for thermoelastic bodies. With a known equilibrium shape as input, the focus of this paper is the determination of the corresponding initial shape of a body undergoing thermal expansion or contraction, as well as nonlinear elastic deformations. A distinguishing feature of the described method lies in its capability to approximately prescribe an initial heterogeneous temperature distribution as well as an initial stress field even though the initial shape is unknown. At the core of the method, there is a system of nonlinear partial differential equations. They are discretized and solved with the finite element method or isogeometric analysis. In order to better integrate the method with application-oriented simulations, an iterative procedure is described that allows fine-tuning of the results. The method was motivated by an inverse cavity design problem in injection molding applications. Its use in this field is specifically highlighted, but the general description is kept independent of the application to simplify its adaptation to a wider range of use cases.Comment: 22 pages, 13 figure

    A "poor man's" approach for high-resolution three-dimensional topology optimization of natural convection problems

    Full text link
    This paper treats topology optimization of natural convection problems. A simplified model is suggested to describe the flow of an incompressible fluid in steady state conditions, similar to Darcy's law for fluid flow in porous media. The equations for the fluid flow are coupled to the thermal convection-diffusion equation through the Boussinesq approximation. The coupled non-linear system of equations is discretized with stabilized finite elements and solved in a parallel framework that allows for the optimization of high resolution three-dimensional problems. A density-based topology optimization approach is used, where a two-material interpolation scheme is applied to both the permeability and conductivity of the distributed material. Due to the simplified model, the proposed methodology allows for a significant reduction of the computational effort required in the optimization. At the same time, it is significantly more accurate than even simpler models that rely on convection boundary conditions based on Newton's law of cooling. The methodology discussed herein is applied to the optimization-based design of three-dimensional heat sinks. The final designs are formally compared with results of previous work obtained from solving the full set of Navier-Stokes equations. The results are compared in terms of performance of the optimized designs and computational cost. The computational time is shown to be decreased to around 5-20% in terms of core-hours, allowing for the possibility of generating an optimized design during the workday on a small computational cluster and overnight on a high-end desktop

    Two optimization problems in thermal insulation

    Get PDF
    We consider two optimization problems in thermal insulation: in both cases the goal is to find a thin layer around the boundary of the thermal body which gives the best insulation. The total mass of the insulating material is prescribed.. The first problem deals with the case in which a given heat source is present, while in the second one there are no heat sources and the goal is to have the slowest decay of the temperature. In both cases an optimal distribution of the insulator around the thermal body exists; when the body has a circular symmetry, in the first case a constant heat source gives a constant thickness as the optimal solution, while surprisingly this is not the case in the second problem, where the circular symmetry of the optimal insulating layer depends on the total quantity of insulator at our disposal. A symmetry breaking occurs when this total quantity is below a certain threshold. Some numerical computations are also provided, together with a list of open questions.Comment: 11 pages, 7 figures, published article on Notices Amer. Math. Soc. is available at http://www.ams.org/publications/journals/notices/201708/rnoti-p830.pd
    • …
    corecore