5,167 research outputs found

    Computational neural learning formalisms for manipulator inverse kinematics

    Get PDF
    An efficient, adaptive neural learning paradigm for addressing the inverse kinematics of redundant manipulators is presented. The proposed methodology exploits the infinite local stability of terminal attractors - a new class of mathematical constructs which provide unique information processing capabilities to artificial neural systems. For robotic applications, synaptic elements of such networks can rapidly acquire the kinematic invariances embedded within the presented samples. Subsequently, joint-space configurations, required to follow arbitrary end-effector trajectories, can readily be computed. In a significant departure from prior neuromorphic learning algorithms, this methodology provides mechanisms for incorporating an in-training skew to handle kinematics and environmental constraints

    Forward and Inverse Kinematics Solution of A 3-DOF Articulated Robotic Manipulator Using Artificial Neural Network

    Get PDF
    In this research paper, the multilayer feedforward neural network (MLFFNN) is architected and described for solving the forward and inverse kinematics of the 3-DOF articulated robot. When designing the MLFFNN network for forward kinematics, the joints' variables are used as inputs to the network, and the positions and orientations of the robot end-effector are used as outputs. In the case of inverse kinematics, the MLFFNN network is designed using only the positions of the robot end-effector as the inputs, whereas the joints’ variables are the outputs. For both cases, the training of the proposed multilayer network is accomplished by Levenberg Marquardt (LM) method. A sinusoidal type of motion using variable frequencies is commanded to the three joints of the articulated manipulator, and then the data is collected for the training, testing, and validation processes. The experimental simulation results demonstrate that the proposed artificial neural network that is inspired by biological processes is trained very effectively, as indicated by the calculated mean squared error (MSE), which is approximately equal to zero. The resulted in smallest MSE in the case of the forward kinematics is 4.592×10^(-8) in the case of the inverse kinematics, is 9.071×10^(-7). This proves that the proposed MLFFNN artificial network is highly reliable and robust in minimizing error. The proposed method is applied to a 3-DOF manipulator and could be used in more complex types of robots like 6-DOF or 7-DOF robots

    Inverse kinematics of a 6 DoF human upper limb using ANFIS and ANN for anticipatory actuation in ADL-based physical Neurorehabilitation

    Full text link
    Objective: This research is focused in the creation and validation of a solution to the inverse kinematics problem for a 6 degrees of freedom human upper limb. This system is intended to work within a realtime dysfunctional motion prediction system that allows anticipatory actuation in physical Neurorehabilitation under the assisted-as-needed paradigm. For this purpose, a multilayer perceptron-based and an ANFIS-based solution to the inverse kinematics problem are evaluated. Materials and methods: Both the multilayer perceptron-based and the ANFIS-based inverse kinematics methods have been trained with three-dimensional Cartesian positions corresponding to the end-effector of healthy human upper limbs that execute two different activities of the daily life: "serving water from a jar" and "picking up a bottle". Validation of the proposed methodologies has been performed by a 10 fold cross-validation procedure. Results: Once trained, the systems are able to map 3D positions of the end-effector to the corresponding healthy biomechanical configurations. A high mean correlation coefficient and a low root mean squared error have been found for both the multilayer perceptron and ANFIS-based methods. Conclusions: The obtained results indicate that both systems effectively solve the inverse kinematics problem, but, due to its low computational load, crucial in real-time applications, along with its high performance, a multilayer perceptron-based solution, consisting in 3 input neurons, 1 hidden layer with 3 neurons and 6 output neurons has been considered the most appropriated for the target application

    SELF-COLLISION AVOIDANCE OF ARM ROBOT USING GENERATIVE ADVERSARIAL NETWORK AND PARTICLES SWARM OPTIMIZATION (GAN-PSO)

    Get PDF
    Collision avoidance of Arm Robot is designed for the robot to collide objects, colliding environment, and colliding its body. Self-collision avoidance was successfully trained using Generative Adversarial Networks (GANs) and Particle Swarm Optimization (PSO). The Inverse Kinematics (IK) with 96K motion data was extracted as the dataset to train data distribution of  3.6K samples and 7.2K samples. The proposed method GANs-PSO can solve the common GAN problem such as Mode Collapse or Helvetica Scenario that occurs when the generator  always gets the same output point which mapped to different input  values. The discriminator  produces the random samples' data distribution in which present the real data distribution (generated by Inverse Kinematic analysis).  The PSO was successfully reduced the number of training epochs of the generator  only with 5000 iterations. The result of our proposed method (GANs-PSO) with 50 particles was 5000 training epochs executed in 0.028ms per single prediction and 0.027474% Generator Mean Square Error (GMSE)

    Inverse Mappers for QCD Global Analysis

    Get PDF
    Inverse problems – using measured observations to determine unknown parameters – are well motivated but challenging in many scientific problems. Mapping parameters to observables is a well-posed problem with unique solutions, and therefore can be solved with differential equations or linear algebra solvers. However, the inverse problem requires backward mapping from observable to parameter space, which is often nonunique. Consequently, solving inverse problems is ill-posed and a far more challenging computational problem. Our motivated application in this dissertation is the inverse problems in nuclear physics that characterize the internal structure of the hadrons. We first present a machine learning framework called Variational Autoencoder Inverse Mapper (VAIM), as an autoencoder based neural network architecture to construct an effective “inverse function” that maps experimental data into QCFs. In addition to the well-known inverse problems challenges such as ill-posedness, an application specific issue is that the experimental data are observed on kinematics bins which are usually irregular and varying. To address this ill defined problem, we represent the observables together with their kinematics bins as an unstructured, high-dimensional point cloud. The point cloud representation is incorporated into the VAIM framework. Our new architecture point cloud-based VAIM (PCVAIM) enables the underlying deep neural networks to learn how the observables are distributed across kinematics. Next, we present our methods of extracting the leading twist Compton form factors (CFFs) from polarization observables. In this context, we extend VAIM framework to the Conditional -VAIM to extract the CFFs from the DVCS cross sections on several kinematics. Connected to this effort is a study of the effectiveness of incorporating physics knowledge into machine learning. We start this task by incorporating physics constraints to the forward problem of mapping the kinematics to the cross sections. First, we develop Physics Constrained Neural Networks (PCNNs) for Deeply Virtual Exclusive Scattering (DVCS) cross sections by integrating some of the physics laws such as the symmetry constraints of the cross sections. This provides us with an inception of incorporating physics rules into our inverse mappers which will one of the directions of our future research

    The control of a manipulator using cerebellar model articulation controllers

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2003Includes bibliographical references (leaves: 72-74)Text in English; Abstract: Turkish and Englishviii, 91 leavesThe emergence of the theory of artificial neural networks has made it possible to develop neural learning schemes that can be used to obtain alternative solutions to complex problems such as inverse kinematic control for robotic systems. The cerebellar model articulation controller (CMAC) is a neural network topology commonly used in the field of robotic control which was formulated in the 1970s by Albus. In this thesis, CMAC neural networks are analyzed in detail. Optimum network parameters and training techniques are discussed. The relationship between CMAC network parameters and training techniques are presented. An appropriate CMAC network is designed for the inverse kinematic control of a two-link robot manipulator
    • …
    corecore