17,593 research outputs found

    Holes or Empty Pseudo-Triangles in Planar Point Sets

    Full text link
    Let E(k,)E(k, \ell) denote the smallest integer such that any set of at least E(k,)E(k, \ell) points in the plane, no three on a line, contains either an empty convex polygon with kk vertices or an empty pseudo-triangle with \ell vertices. The existence of E(k,)E(k, \ell) for positive integers k,3k, \ell\geq 3, is the consequence of a result proved by Valtr [Discrete and Computational Geometry, Vol. 37, 565--576, 2007]. In this paper, following a series of new results about the existence of empty pseudo-triangles in point sets with triangular convex hulls, we determine the exact values of E(k,5)E(k, 5) and E(5,)E(5, \ell), and prove bounds on E(k,6)E(k, 6) and E(6,)E(6, \ell), for k,3k, \ell\geq 3. By dropping the emptiness condition, we define another related quantity F(k,)F(k, \ell), which is the smallest integer such that any set of at least F(k,)F(k, \ell) points in the plane, no three on a line, contains a convex polygon with kk vertices or a pseudo-triangle with \ell vertices. Extending a result of Bisztriczky and T\'oth [Discrete Geometry, Marcel Dekker, 49--58, 2003], we obtain the exact values of F(k,5)F(k, 5) and F(k,6)F(k, 6), and obtain non-trivial bounds on F(k,7)F(k, 7).Comment: A minor error in the proof of Theorem 2 fixed. Typos corrected. 19 pages, 11 figure

    Multitriangulations, pseudotriangulations and primitive sorting networks

    Get PDF
    We study the set of all pseudoline arrangements with contact points which cover a given support. We define a natural notion of flip between these arrangements and study the graph of these flips. In particular, we provide an enumeration algorithm for arrangements with a given support, based on the properties of certain greedy pseudoline arrangements and on their connection with sorting networks. Both the running time per arrangement and the working space of our algorithm are polynomial. As the motivation for this work, we provide in this paper a new interpretation of both pseudotriangulations and multitriangulations in terms of pseudoline arrangements on specific supports. This interpretation explains their common properties and leads to a natural definition of multipseudotriangulations, which generalizes both. We study elementary properties of multipseudotriangulations and compare them to iterations of pseudotriangulations.Comment: 60 pages, 40 figures; minor corrections and improvements of presentatio

    Phase transitions in Delaunay Potts models

    Full text link
    We establish phase transitions for classes of continuum Delaunay multi-type particle systems (continuum Potts models) with infinite range repulsive interaction between particles of different type. In one class of the Delaunay Potts models studied the repulsive interaction is a triangle (multi-body) interaction whereas in the second class the interaction is between pairs (edges) of the Delaunay graph. The result for the edge model is an extension of finite range results in \cite{BBD04} for the Delaunay graph and in \cite{GH96} for continuum Potts models to an infinite range repulsion decaying with the edge length. This is a proof of an old conjecture of Lebowitz and Lieb. The repulsive triangle interactions have infinite range as well and depend on the underlying geometry and thus are a first step towards studying phase transitions for geometry-dependent multi-body systems. Our approach involves a Delaunay random-cluster representation analogous to the Fortuin-Kasteleyn representation of the Potts model. The phase transitions manifest themselves in the percolation of the corresponding random-cluster model. Our proofs rely on recent studies \cite{DDG12} of Gibbs measures for geometry-dependent interactions

    Flip Graphs of Degree-Bounded (Pseudo-)Triangulations

    Full text link
    We study flip graphs of triangulations whose maximum vertex degree is bounded by a constant kk. In particular, we consider triangulations of sets of nn points in convex position in the plane and prove that their flip graph is connected if and only if k>6k > 6; the diameter of the flip graph is O(n2)O(n^2). We also show that, for general point sets, flip graphs of pointed pseudo-triangulations can be disconnected for k9k \leq 9, and flip graphs of triangulations can be disconnected for any kk. Additionally, we consider a relaxed version of the original problem. We allow the violation of the degree bound kk by a small constant. Any two triangulations with maximum degree at most kk of a convex point set are connected in the flip graph by a path of length O(nlogn)O(n \log n), where every intermediate triangulation has maximum degree at most k+4k+4.Comment: 13 pages, 12 figures, acknowledgments update

    M-curves of degree 9 with deep nests

    Full text link
    The first part of Hilbert's sixteenth problem deals with the classification of the isotopy types realizable by real plane algebraic curves of given degree mm. For m8m \geq 8, one restricts the study to the case of the MM-curves. For m=9m=9, the classification is still wide open. We say that an MM-curve of degree 9 has a deep nest if it has a nest of depth 3. In the present paper, we prohibit 10 isotopy types with deep nests and no outer ovals.Comment: 16 pages, 11 figures v.4 minimal correction
    corecore