1,257 research outputs found

    The Mixed Vector Current Correlator <0|T(V^3_\mu V^8_\nu )|0> To Two Loops in Chiral Perturbation Theory

    Full text link
    The isospin-breaking correlator of the product of flavor octet vector currents, Vμ3V^3_\mu and Vν8V^8_\nu, Πμν38(q2)\Pi^{38}_{\mu\nu}(q^2) is computed to next-to-next- to-leading (two-loop) order in Chiral Perturbation Theory. Large corrections to both the magnitude and q2q^2-dependence of the one-loop result are found, and the reasons for the slow convergence of the chiral series for the correlator given. The two-loop expression involves a single O(q6){\cal O}(q^6) counterterm, present also in the two-loop expressions for Πμν33(q2)\Pi^{33}_{\mu\nu}(q^2) and Πμν88(q2)\Pi^{88}_{\mu\nu}(q^2), which counterterm contributes a constant to the scalar correlator Π38(q2)\Pi^{38}(q^2). The feasibility of extracting the value of this counterterm from other sources is discussed. Analysis of the slope of the correlator with respect to q2q^2 using QCD sum rules is shown to suggest that, even to two-loop order, the chiral series for the correlator may not yet be well-converged.Comment: 32 pages, uses REVTEX and epsfig.sty with 7 uuencoded figures. Entire manuscript available as a ps file at http://www.physics.adelaide.edu.au/theory/home.html Also available via anonymous ftp at ftp://adelphi.adelaide.edu.au/pub/theory/ADP-95-27.T181.p

    Lucas' theorem: its generalizations, extensions and applications (1878--2014)

    Full text link
    In 1878 \'E. Lucas proved a remarkable result which provides a simple way to compute the binomial coefficient (nm){n\choose m} modulo a prime pp in terms of the binomial coefficients of the base-pp digits of nn and mm: {\it If pp is a prime, n=n0+n1p+⋯+nspsn=n_0+n_1p+\cdots +n_sp^s and m=m0+m1p+⋯+mspsm=m_0+m_1p+\cdots +m_sp^s are the pp-adic expansions of nonnegative integers nn and mm, then \begin{equation*} {n\choose m}\equiv \prod_{i=0}^{s}{n_i\choose m_i}\pmod{p}. \end{equation*}} The above congruence, the so-called {\it Lucas' theorem} (or {\it Theorem of Lucas}), plays an important role in Number Theory and Combinatorics. In this article, consisting of six sections, we provide a historical survey of Lucas type congruences, generalizations of Lucas' theorem modulo prime powers, Lucas like theorems for some generalized binomial coefficients, and some their applications. In Section 1 we present the fundamental congruences modulo a prime including the famous Lucas' theorem. In Section 2 we mention several known proofs and some consequences of Lucas' theorem. In Section 3 we present a number of extensions and variations of Lucas' theorem modulo prime powers. In Section 4 we consider the notions of the Lucas property and the double Lucas property, where we also present numerous integer sequences satisfying one of these properties or a certain Lucas type congruence. In Section 5 we collect several known Lucas type congruences for some generalized binomial coefficients. In particular, this concerns the Fibonomial coefficients, the Lucas uu-nomial coefficients, the Gaussian qq-nomial coefficients and their generalizations. Finally, some applications of Lucas' theorem in Number Theory and Combinatorics are given in Section 6.Comment: 51 pages; survey article on Lucas type congruences closely related to Lucas' theore

    Hori-mological projective duality

    Get PDF
    Kuznetsov has conjectured that Pfaffian varieties should admit non-commutative crepant resolutions which satisfy his Homological Projective Duality. We prove half the cases of this conjecture, by interpreting and proving a duality of non-abelian gauged linear sigma models proposed by Hori.Comment: 55 pages. V2: slightly rewritten to take advantage of the `non-commutative Bertini theorem' recently proved by the authors and Van den Bergh. V3: lots of changes in exposition following referees' comments. Section 5 has been mostly cut because it was boring. To appear in Duke Math. J. V3: added funder acknowledgemen

    Effects of disorder on two strongly correlated coupled chains

    Full text link
    We study the effects of disorder on a system of two coupled chain of strongly correlated fermions (ladder system), using renormalization group. The stability of the phases of the pure system is investigated as a function of interactions both for fermions with spin and spinless fermions. For spinless fermions the repulsive side is strongly localized whereas the system with attractive interactions is stable with respect to disorder, at variance with the single chain case. For fermions with spins, the repulsive side is also localized, and in particular the d-wave superconducting phase found for the pure system is totally destroyed by an arbitrarily small amount of disorder. On the other hand the attractive side is again remarkably stable with respect to localization. We have also computed the charge stiffness, the localization length and the temperature dependence of the conductivity for the various phases. In the range of parameter where d-wave superconductivity would occur for the pure system the conductivity is found to decrease monotonically with temperature, even at high temperature, and we discuss this surprising result. For a model with one site repulsion and nearest neighbor attraction, the most stable phase is an orbital antiferromagnet . Although this phase has no divergent superconducting fluctuation it can have a divergent conductivity at low temperature. We argue based on our results that the superconductivity observed in some two chain compounds cannot be a simple stabilization of the d-wave phase found for a pure single ladder. Applications to quantum wires are discussed.Comment: 47 pages, ReVTeX , 8 eps figures submitted to PR
    • …
    corecore