144,127 research outputs found

    No triangles on the moduli space of maximally supersymmetric gauge theory

    Full text link
    Maximally supersymmetric gauge theory in four dimensions has a remarkably simple S-matrix at the origin of its moduli space at both tree and loop level. This leads to the question what, if any, of this structure survives at the complement of this one point. Here this question is studied in detail at one loop for the branch of the moduli space parameterized by a vacuum expectation value for one complex scalar. Motivated by the parallel D-brane picture of spontaneous symmetry breaking a simple relation is demonstrated between the Lagrangian of broken super Yang-Mills theory and that of its higher dimensional unbroken cousin. Using this relation it is proven both through an on- as well as an off-shell method there are no so-called triangle coefficients in the natural basis of one-loop functions at any finite point of the moduli space for the theory under study. The off-shell method yields in addition absence of rational terms in a class of theories on the Coulomb branch which includes the special case of maximal supersymmetry. The results in this article provide direct field theory evidence for a recently proposed exact dual conformal symmetry motivated by the AdS/CFT correspondence.Comment: 39 pages, 4 figure

    Exactly-Solvable Models Derived from a Generalized Gaudin Algebra

    Get PDF
    We introduce a generalized Gaudin Lie algebra and a complete set of mutually commuting quantum invariants allowing the derivation of several families of exactly solvable Hamiltonians. Different Hamiltonians correspond to different representations of the generators of the algebra. The derived exactly-solvable generalized Gaudin models include the Bardeen-Cooper-Schrieffer, Suhl-Matthias-Walker, the Lipkin-Meshkov-Glick, generalized Dicke, the Nuclear Interacting Boson Model, a new exactly-solvable Kondo-like impurity model, and many more that have not been exploited in the physics literature yet

    Automata and rational expressions

    Full text link
    This text is an extended version of the chapter 'Automata and rational expressions' in the AutoMathA Handbook that will appear soon, published by the European Science Foundation and edited by JeanEricPin

    Analyzing intramolecular vibrational energy redistribution via the overlap intensity-level velocity correlator

    Full text link
    Numerous experimental and theoretical studies have established that intramolecular vibrational energy redistribution (IVR) in isolated molecules has a heirarchical tier structure. The tier structure implies strong correlations between the energy level motions of a quantum system and its intensity-weighted spectrum. A measure, which explicitly accounts for this correaltion, was first introduced by one of us as a sensitive probe of phase space localization. It correlates eigenlevel velocities with the overlap intensities between the eigenstates and some localized state of interest. A semiclassical theory for the correlation is developed for systems that are classically integrable and complements earlier work focusing exclusively on the chaotic case. Application to a model two dimensional effective spectroscopic Hamiltonian shows that the correlation measure can provide information about the terms in the molecular Hamiltonian which play an important role in an energy range of interest and the character of the dynamics. Moreover, the correlation function is capable of highlighting relevant phase space structures including the local resonance features associated with a specific bright state. In addition to being ideally suited for multidimensional systems with a large density of states, the measure can also be used to gain insights into the phase space transport and localization. It is argued that the overlap intensity-level velocity correlation function provides a novel way of studying vibrational energy redistribution in isolated molecules. The correlation function is ideally suited to analyzing the parametric spectra of molecules in external fields.Comment: 16 pages, 13 figures (low resolution

    A Note on 1/4-BPS States

    Get PDF
    We study classical solutions of N=4 super Yang-Mills theories that are invariant under 1/4 of the supersymmetry generators. Expressions for the mass and electric charge of the configurations are derived as functions on the monopole moduli space. These functions also provide a method of determining the number of normalisable bosonic zero modes.Comment: 10 pages, LaTe
    • …
    corecore