484 research outputs found

    Sets Characterized by Missing Sums and Differences in Dilating Polytopes

    Get PDF
    A sum-dominant set is a finite set AA of integers such that A+A>AA|A+A| > |A-A|. As a typical pair of elements contributes one sum and two differences, we expect sum-dominant sets to be rare in some sense. In 2006, however, Martin and O'Bryant showed that the proportion of sum-dominant subsets of {0,,n}\{0,\dots,n\} is bounded below by a positive constant as nn\to\infty. Hegarty then extended their work and showed that for any prescribed s,dN0s,d\in\mathbb{N}_0, the proportion ρns,d\rho^{s,d}_n of subsets of {0,,n}\{0,\dots,n\} that are missing exactly ss sums in {0,,2n}\{0,\dots,2n\} and exactly 2d2d differences in {n,,n}\{-n,\dots,n\} also remains positive in the limit. We consider the following question: are such sets, characterized by their sums and differences, similarly ubiquitous in higher dimensional spaces? We generalize the integers in a growing interval to the lattice points in a dilating polytope. Specifically, let PP be a polytope in RD\mathbb{R}^D with vertices in ZD\mathbb{Z}^D, and let ρns,d\rho_n^{s,d} now denote the proportion of subsets of L(nP)L(nP) that are missing exactly ss sums in L(nP)+L(nP)L(nP)+L(nP) and exactly 2d2d differences in L(nP)L(nP)L(nP)-L(nP). As it turns out, the geometry of PP has a significant effect on the limiting behavior of ρns,d\rho_n^{s,d}. We define a geometric characteristic of polytopes called local point symmetry, and show that ρns,d\rho_n^{s,d} is bounded below by a positive constant as nn\to\infty if and only if PP is locally point symmetric. We further show that the proportion of subsets in L(nP)L(nP) that are missing exactly ss sums and at least 2d2d differences remains positive in the limit, independent of the geometry of PP. A direct corollary of these results is that if PP is additionally point symmetric, the proportion of sum-dominant subsets of L(nP)L(nP) also remains positive in the limit.Comment: Version 1.1, 23 pages, 7 pages, fixed some typo

    Rigidity of spherical codes

    Full text link
    A packing of spherical caps on the surface of a sphere (that is, a spherical code) is called rigid or jammed if it is isolated within the space of packings. In other words, aside from applying a global isometry, the packing cannot be deformed. In this paper, we systematically study the rigidity of spherical codes, particularly kissing configurations. One surprise is that the kissing configuration of the Coxeter-Todd lattice is not jammed, despite being locally jammed (each individual cap is held in place if its neighbors are fixed); in this respect, the Coxeter-Todd lattice is analogous to the face-centered cubic lattice in three dimensions. By contrast, we find that many other packings have jammed kissing configurations, including the Barnes-Wall lattice and all of the best kissing configurations known in four through twelve dimensions. Jamming seems to become much less common for large kissing configurations in higher dimensions, and in particular it fails for the best kissing configurations known in 25 through 31 dimensions. Motivated by this phenomenon, we find new kissing configurations in these dimensions, which improve on the records set in 1982 by the laminated lattices.Comment: 39 pages, 8 figure

    Borel Anosov subgroups of SL(d,R){\rm SL}(d,\mathbb{R})

    Full text link
    We study the antipodal subsets of the full flag manifolds F(Rd)\mathcal{F}(\mathbb{R}^d). As a consequence, for natural numbers d2d \ge 2 such that d5d\ne 5 and d≢0,±1mod8d \not\equiv 0,\pm1 \mod 8, we show that Borel Anosov subgroups of SL(d,R){\rm SL}(d,\mathbb{R}) are virtually isomorphic to either a free group or the fundamental group of a closed hyperbolic surface. Moreover, we obtain restrictions on the hyperbolic spaces admitting uniformly-regular quasiisometric embeddings into the symmetric space XdX_d of SL(d,R){\rm SL}(d,\mathbb{R}).Comment: 20 pages, 1 figur

    Balanced Islands in Two Colored Point Sets in the Plane

    Get PDF
    Let SS be a set of nn points in general position in the plane, rr of which are red and bb of which are blue. In this paper we prove that there exist: for every α[0,12]\alpha \in \left [ 0,\frac{1}{2} \right ], a convex set containing exactly αr\lceil \alpha r\rceil red points and exactly αb\lceil \alpha b \rceil blue points of SS; a convex set containing exactly r+12\left \lceil \frac{r+1}{2}\right \rceil red points and exactly b+12\left \lceil \frac{b+1}{2}\right \rceil blue points of SS. Furthermore, we present polynomial time algorithms to find these convex sets. In the first case we provide an O(n4)O(n^4) time algorithm and an O(n2logn)O(n^2\log n) time algorithm in the second case. Finally, if αr+αb\lceil \alpha r\rceil+\lceil \alpha b\rceil is small, that is, not much larger than 13n\frac{1}{3}n, we improve the running time to O(nlogn)O(n \log n)
    corecore