3,186 research outputs found

    Faster all-pairs shortest paths via circuit complexity

    Full text link
    We present a new randomized method for computing the min-plus product (a.k.a., tropical product) of two n×nn \times n matrices, yielding a faster algorithm for solving the all-pairs shortest path problem (APSP) in dense nn-node directed graphs with arbitrary edge weights. On the real RAM, where additions and comparisons of reals are unit cost (but all other operations have typical logarithmic cost), the algorithm runs in time n32Ω(log⁥n)1/2\frac{n^3}{2^{\Omega(\log n)^{1/2}}} and is correct with high probability. On the word RAM, the algorithm runs in n3/2Ω(log⁥n)1/2+n2+o(1)log⁥Mn^3/2^{\Omega(\log n)^{1/2}} + n^{2+o(1)}\log M time for edge weights in ([0,M]∩Z)âˆȘ{∞}([0,M] \cap {\mathbb Z})\cup\{\infty\}. Prior algorithms used either n3/(log⁥cn)n^3/(\log^c n) time for various c≀2c \leq 2, or O(MαnÎČ)O(M^{\alpha}n^{\beta}) time for various α>0\alpha > 0 and ÎČ>2\beta > 2. The new algorithm applies a tool from circuit complexity, namely the Razborov-Smolensky polynomials for approximately representing AC0[p]{\sf AC}^0[p] circuits, to efficiently reduce a matrix product over the (min⁥,+)(\min,+) algebra to a relatively small number of rectangular matrix products over F2{\mathbb F}_2, each of which are computable using a particularly efficient method due to Coppersmith. We also give a deterministic version of the algorithm running in n3/2log⁥Ύnn^3/2^{\log^{\delta} n} time for some ÎŽ>0\delta > 0, which utilizes the Yao-Beigel-Tarui translation of AC0[m]{\sf AC}^0[m] circuits into "nice" depth-two circuits.Comment: 24 pages. Updated version now has slightly faster running time. To appear in ACM Symposium on Theory of Computing (STOC), 201

    Strong ETH Breaks With Merlin and Arthur: Short Non-Interactive Proofs of Batch Evaluation

    Get PDF
    We present an efficient proof system for Multipoint Arithmetic Circuit Evaluation: for every arithmetic circuit C(x1,
,xn)C(x_1,\ldots,x_n) of size ss and degree dd over a field F{\mathbb F}, and any inputs a1,
,aK∈Fna_1,\ldots,a_K \in {\mathbb F}^n, ∙\bullet the Prover sends the Verifier the values C(a1),
,C(aK)∈FC(a_1), \ldots, C(a_K) \in {\mathbb F} and a proof of O~(K⋅d)\tilde{O}(K \cdot d) length, and ∙\bullet the Verifier tosses poly(log⁥(dK∣F∣/Δ))\textrm{poly}(\log(dK|{\mathbb F}|/\varepsilon)) coins and can check the proof in about O~(K⋅(n+d)+s)\tilde{O}(K \cdot(n + d) + s) time, with probability of error less than Δ\varepsilon. For small degree dd, this "Merlin-Arthur" proof system (a.k.a. MA-proof system) runs in nearly-linear time, and has many applications. For example, we obtain MA-proof systems that run in cnc^{n} time (for various c<2c < 2) for the Permanent, #\#Circuit-SAT for all sublinear-depth circuits, counting Hamiltonian cycles, and infeasibility of 00-11 linear programs. In general, the value of any polynomial in Valiant's class VP{\sf VP} can be certified faster than "exhaustive summation" over all possible assignments. These results strongly refute a Merlin-Arthur Strong ETH and Arthur-Merlin Strong ETH posed by Russell Impagliazzo and others. We also give a three-round (AMA) proof system for quantified Boolean formulas running in 22n/3+o(n)2^{2n/3+o(n)} time, nearly-linear time MA-proof systems for counting orthogonal vectors in a collection and finding Closest Pairs in the Hamming metric, and a MA-proof system running in nk/2+O(1)n^{k/2+O(1)}-time for counting kk-cliques in graphs. We point to some potential future directions for refuting the Nondeterministic Strong ETH.Comment: 17 page

    Monotone Projection Lower Bounds from Extended Formulation Lower Bounds

    Get PDF
    In this short note, we reduce lower bounds on monotone projections of polynomials to lower bounds on extended formulations of polytopes. Applying our reduction to the seminal extended formulation lower bounds of Fiorini, Massar, Pokutta, Tiwari, & de Wolf (STOC 2012; J. ACM, 2015) and Rothvoss (STOC 2014; J. ACM, 2017), we obtain the following interesting consequences. 1. The Hamiltonian Cycle polynomial is not a monotone subexponential-size projection of the permanent; this both rules out a natural attempt at a monotone lower bound on the Boolean permanent, and shows that the permanent is not complete for non-negative polynomials in VNPR_{{\mathbb R}} under monotone p-projections. 2. The cut polynomials and the perfect matching polynomial (or "unsigned Pfaffian") are not monotone p-projections of the permanent. The latter, over the Boolean and-or semi-ring, rules out monotone reductions in one of the natural approaches to reducing perfect matchings in general graphs to perfect matchings in bipartite graphs. As the permanent is universal for monotone formulas, these results also imply exponential lower bounds on the monotone formula size and monotone circuit size of these polynomials.Comment: Published in Theory of Computing, Volume 13 (2017), Article 18; Received: November 10, 2015, Revised: July 27, 2016, Published: December 22, 201

    Chunky and Equal-Spaced Polynomial Multiplication

    Get PDF
    Finding the product of two polynomials is an essential and basic problem in computer algebra. While most previous results have focused on the worst-case complexity, we instead employ the technique of adaptive analysis to give an improvement in many "easy" cases. We present two adaptive measures and methods for polynomial multiplication, and also show how to effectively combine them to gain both advantages. One useful feature of these algorithms is that they essentially provide a gradient between existing "sparse" and "dense" methods. We prove that these approaches provide significant improvements in many cases but in the worst case are still comparable to the fastest existing algorithms.Comment: 23 Pages, pdflatex, accepted to Journal of Symbolic Computation (JSC

    The Limited Power of Powering: Polynomial Identity Testing and a Depth-four Lower Bound for the Permanent

    Get PDF
    Polynomial identity testing and arithmetic circuit lower bounds are two central questions in algebraic complexity theory. It is an intriguing fact that these questions are actually related. One of the authors of the present paper has recently proposed a "real {\tau}-conjecture" which is inspired by this connection. The real {\tau}-conjecture states that the number of real roots of a sum of products of sparse univariate polynomials should be polynomially bounded. It implies a superpolynomial lower bound on the size of arithmetic circuits computing the permanent polynomial. In this paper we show that the real {\tau}-conjecture holds true for a restricted class of sums of products of sparse polynomials. This result yields lower bounds for a restricted class of depth-4 circuits: we show that polynomial size circuits from this class cannot compute the permanent, and we also give a deterministic polynomial identity testing algorithm for the same class of circuits.Comment: 16 page

    Fast Arithmetics in Artin-Schreier Towers over Finite Fields

    Get PDF
    An Artin-Schreier tower over the finite field F_p is a tower of field extensions generated by polynomials of the form X^p - X - a. Following Cantor and Couveignes, we give algorithms with quasi-linear time complexity for arithmetic operations in such towers. As an application, we present an implementation of Couveignes' algorithm for computing isogenies between elliptic curves using the p-torsion.Comment: 28 pages, 4 figures, 3 tables, uses mathdots.sty, yjsco.sty Submitted to J. Symb. Compu

    Shallow Circuits with High-Powered Inputs

    Get PDF
    A polynomial identity testing algorithm must determine whether an input polynomial (given for instance by an arithmetic circuit) is identically equal to 0. In this paper, we show that a deterministic black-box identity testing algorithm for (high-degree) univariate polynomials would imply a lower bound on the arithmetic complexity of the permanent. The lower bounds that are known to follow from derandomization of (low-degree) multivariate identity testing are weaker. To obtain our lower bound it would be sufficient to derandomize identity testing for polynomials of a very specific norm: sums of products of sparse polynomials with sparse coefficients. This observation leads to new versions of the Shub-Smale tau-conjecture on integer roots of univariate polynomials. In particular, we show that a lower bound for the permanent would follow if one could give a good enough bound on the number of real roots of sums of products of sparse polynomials (Descartes' rule of signs gives such a bound for sparse polynomials and products thereof). In this third version of our paper we show that the same lower bound would follow even if one could only prove a slightly superpolynomial upper bound on the number of real roots. This is a consequence of a new result on reduction to depth 4 for arithmetic circuits which we establish in a companion paper. We also show that an even weaker bound on the number of real roots would suffice to obtain a lower bound on the size of depth 4 circuits computing the permanent.Comment: A few typos correcte

    Algebraic Signal Processing Theory: Cooley-Tukey Type Algorithms for DCTs and DSTs

    Full text link
    This paper presents a systematic methodology based on the algebraic theory of signal processing to classify and derive fast algorithms for linear transforms. Instead of manipulating the entries of transform matrices, our approach derives the algorithms by stepwise decomposition of the associated signal models, or polynomial algebras. This decomposition is based on two generic methods or algebraic principles that generalize the well-known Cooley-Tukey FFT and make the algorithms' derivations concise and transparent. Application to the 16 discrete cosine and sine transforms yields a large class of fast algorithms, many of which have not been found before.Comment: 31 pages, more information at http://www.ece.cmu.edu/~smar
    • 

    corecore