585 research outputs found

    IETF standardization in the field of the Internet of Things (IoT): a survey

    Get PDF
    Smart embedded objects will become an important part of what is called the Internet of Things. However, the integration of embedded devices into the Internet introduces several challenges, since many of the existing Internet technologies and protocols were not designed for this class of devices. In the past few years, there have been many efforts to enable the extension of Internet technologies to constrained devices. Initially, this resulted in proprietary protocols and architectures. Later, the integration of constrained devices into the Internet was embraced by IETF, moving towards standardized IP-based protocols. In this paper, we will briefly review the history of integrating constrained devices into the Internet, followed by an extensive overview of IETF standardization work in the 6LoWPAN, ROLL and CoRE working groups. This is complemented with a broad overview of related research results that illustrate how this work can be extended or used to tackle other problems and with a discussion on open issues and challenges. As such the aim of this paper is twofold: apart from giving readers solid insights in IETF standardization work on the Internet of Things, it also aims to encourage readers to further explore the world of Internet-connected objects, pointing to future research opportunities

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks

    Evaluation of RPL’s Single Metric Objective Functions

    Get PDF
    In this paper, we evaluate the performance of RPL (IPv6 Routing Protocol for Low Power and Lossy Networks) based on the Objective Function being used to construct the Destination Oriented Directed Acyclic Graph (DODAG). Using the Cooja simulator, we compared Objective Function Zero (OF0) with the Minimum Rank with Hysteresis Objective Function (MRHOF) in terms of average power consumption, packet loss ratio, and average end-to-end latency. Our study shows that RPL performs better in terms of packet loss ratio and average endto-end latency when MRHOF is used as an objective function. However, the average power consumption is noticeably higher compared to OF0

    6LoWPAN:IPv6 for battery-less building networks

    Get PDF

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Contributions to bluetooth low energy mesh networks

    Get PDF
    Bluetooth Low Energy (BLE) has become a popular Internet of Things (IoT) technology. However, it was originally designed to only support the star topology. This PhD thesis investigates and evaluates different Bluetooth Low Energy (BLE) mesh network approaches, including existing ones (such as the Bluetooth Mesh standard), and our own solution for IPv6-based BLE mesh networking (6BLEMesh). The thesis comprises 6 main contributions: 1.- A comprehensive survey on existing BLE mesh networking proposals and a taxonomy for BLE mesh network solutions. 2.- An energy consumption model for Bluetooth Mesh. The model allows to predict useful performance parameters, such as device average current consumption, device lifetime and energy efficiency, considering the impact of the most relevant Bluetooth Mesh parameters, i.e. PollTimeout and ReceiveWindow, as well as application parameters (e.g. the data interval for a sensor that periodically reports its readings). 3.- A new proposed IPv6-based BLE mesh networking IETF standard (in progress), called 6BLEMesh. After defining the characteristics and properties of 6BLEMesh, we evaluated it in terms of connectivity, latency, RTT, and energy consumption. 4.- For the connectivity evaluation of 6BLEMesh, we developed an analytical model that takes a set of network and scenario characteristics as inputs, and provides two main results: i) the probability of no isolation of a node, and ii) the k-connectivity of the considered network. We validated the model by simulation. 5.- An implementation, and an experimental evaluation, of 6BLEMesh. We built a three-node testbed consisting of all node types (i.e. 6LN, 6LR and 6LBR). We used three different popular commercial hardware platforms. We evaluated a number of performance parameters on the testbed, related with latency and energy consumption. Next, we characterized the current consumption patterns of the complete life cycle for different node types in the three-node testbed. We also evaluated the energy performance of a 6LN on three different platforms. We presented a 6LN current consumption model for different connInterval settings. To this end, we experimentally characterized each current consumption state in terms of its duration time and average current consumption value. We illustrated the impact of connInterval on energy performance. 6.- A comparison between Bluetooth Mesh and 6BLEMesh, in terms of protocol stack, protocol encapsulation overhead, end-toend latency, energy consumption, message transmission count, end-to-end reliability, variable topology robustness and Internet connectivity. Bluetooth Mesh and 6BLEMesh offer fundamentally different BLE mesh networking solutions. Their performance depends significantly on their parameter configuration. Nevertheless, the following conclusions can be obtained. Bluetooth Mesh exhibits slightly greater protocol encapsulation overhead than 6BLEmesh. Both Bluetooth Mesh and 6BLEMesh offer flexibility to configure per-hop latency. For a given latency target, 6BLEMesh offers lower energy consumption. In terms of message transmission count, both solutions may offer relatively similar performance for small networks; however, BLEMesh scales better with network size and density. 6BLEMesh approaches ideal packet delivery probability in the presence of bit errors for most parameter settings (at the expense of latency increase), whereas Bluetooth Mesh requires path diversity to achieve similar performance. Bluetooth Mesh does not suffer the connectivity gaps experimented by 6BLEMesh due to topology changes. Finally, 6BLEMesh naturally supports IP-based Internet connectivity, whereas Bluetooth Mesh requires a protocol translation gateway.Bluetooth Low Energy (BLE) ha esdevingut una tecnologia popular per a Internet of Things (loT). Ara bé, va ser originalment dissenyada per suportar només la topologia en estrella. Aquesta tesi doctoral investiga i avalua diferents alternatives de xarxa mesh BLE, incloent alternatives existents (com l'estandard Bluetooth Mesh), i la nostra propia solució basada en IPv6, 6BLEMesh. Aquesta tesi comprén 6 contribucions·principals: 1.- Una revisió exhaustiva de l'estat de l'art i una taxonomia de les xarxes mesh BLE. 2.- Un model de consum d'energia per Bluetooth Mesh. El model permet predir parametres de rendiment útils, tals com consum de corrent, temps de vida del dispositiu i eficiéncia energética, considerant !'impacte deis principals parametres de Bluetooth Mesh (PollTimeout i ReceiveWindow) i a nivell d'aplicació. 3.- Un nou estandard (en progrés) anomenat 6BLEMesh. Després de definir les característiques de 6BLEMesh, aquesta solució ha estat avaluada en termes de connectivitat, laténcia, RTT i consum d'energia. 4.- Per a l'avaluació de connectivitat de 6BLEMesh, hem desenvolupat un model analític que proporciona dos resultats principals: i) probabilitat de no arllament d'un node i ii) k-connectivitat de la xarxa considerada. Hem validat el model mitjani;:ant simulació. .- Una imP.lementació, i una avaluació experimental, de 6BLEMesh. S'ha construrt un testbed de tres nodes, que comprén 5tots els tipus de node principals (6LN, 6LR i 6LBR). S'han usat tres plataformes hardware diferents. S'han avaluat diversos parametres de rendiment en el testbed, relacionats amb laténcia i consum d'energia. A continuació, s'ha caracteritzat els patrons de consum de corren! d'un ciclde de vida complet per als diferents tipus de nodes en el testbed. També s'han avaluat les prestacions d'energia d'un 6LN en tres plataformes diferents. S'ha presenta! un model de consum de corren! d'un 6LN per a diferents valors de connlnterval. Per aquest fi, s'ha caracteritzat emplricament cada estat de consum de corrent en termes de la seva durada i consum de corrent. 6.- Una comparativa entre Bluetooth Mesh i 6BLEMesh, en termes de pila de protocols, overhead d'encapsulament de protocol, laténcia extrem a extrem, consum d'energia, nombre de missatges transmesos, fiabilitat extrem a extrem, robustesa davant de topologies variables, i connexió a Internet. Bluetooth Mesh i 6BLEMesh són solucions de BLE mesh networking fonamentalment diferents. Les seves prestacions depenen de la seva configuració de parametres. Ara bé, es poden extreure les següents conclusions. Bluetooth Mesh mostra un overhead d'encapsulament de protocol lleugerament superior al de 6BLEmesh. Tots dos, Bluetooth Mesh i 6BLEMesh, ofereixen flexibilitat per configurar la laténcia per cada salt. Per un target de laténcia doni¡it, 6BLEMesh ofereix un consum d'energia inferior. En termes de nombre de missatges transmesos, les dues solucions ofereixen prestacions relativament similars per a xarxes petites. Ara bé, 6BLEMesh escala millor amb la mida i la densitat de la xarxa. 6BLEMesh s'aproxima a una probabilitat d'entrega de paquets ideal en preséncia d'errors de bit (amb un increment en la laténcia), mentre que Bluetooth Mesh requereix diversitat de caml per assolir unes prestacions similars. Bluetooth Mesh no pateix els gaps de connectivitat que experimenta 6BLLEMesh a causa de canvis en la topología. Finalment, 6BLEMesh suporta de forma natural la connectivitat amb Internet basada en IP, mentre que Bluetooth Mesh requereix un gateway de traducció de protocols
    • …
    corecore