5,069 research outputs found

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Physical Uplink Control Channel Design for 5G New Radio

    Full text link
    The next generation wireless communication system, 5G, or New Radio (NR) will provide access to information and sharing of data anywhere, anytime by various users and applications with diverse multi-dimensional requirements. Physical Uplink Control Channel (PUCCH), which is mainly utilized to convey Uplink Control Information (UCI), is a fundamental building component to enable NR system. Compared to Long Term Evolution (LTE), more flexible PUCCH structure is specified in NR, aiming to support diverse applications and use cases. This paper describes the design principles of various NR PUCCH formats and the underlying physical structures. Further, extensive simulation results are presented to explain the considerations behind the NR PUCCH design.Comment: 6 pages, 11 figures, accepted in IEEE 5G World Forum 201

    Knot Flow Classification and its Applications in Vehicular Ad-Hoc Networks (VANET)

    Get PDF
    Intrusion detection systems (IDSs) play a crucial role in the identification and mitigation for attacks on host systems. Of these systems, vehicular ad hoc networks (VANETs) are difficult to protect due to the dynamic nature of their clients and their necessity for constant interaction with their respective cyber-physical systems. Currently, there is a need for a VANET-specific IDS that meets this criterion. To this end, a spline-based intrusion detection system has been pioneered as a solution. By combining clustering with spline-based general linear model classification, this knot flow classification method (KFC) allows for robust intrusion detection to occur. Due its design and the manner it is constructed, KFC holds great potential for implementation across a distributed system. The purpose of this thesis was to explain and extrapolate the afore mentioned IDS, highlight its effectiveness, and discuss the conceptual design of the distributed system for use in future research

    Modeling electromagnetic interference generated by a WLAN system onboard commercial aircraft

    Get PDF
    This work forms part of the project HIRF SE which is financially supported under the European Union 7th Framework Programme (FP7). The authors are solely responsible for the contents of the paper which does not represent the opinion of the European Commission.The growing demand for the utilization of personal electronic communication devices onboard commercial aircraft necessitates the assurance of safety by airline operators and regulators. This implies that the potential risks posed by the deployment of wireless communication systems on critical aircraft equipment must be carefully assessed and countermeasures taken when required. In this paper, a model based on a ray-tracing algorithm is developed to calculate the electromagnetic interference incident on the fuselage structure of a commercial airline. The source of interference is a 2.4 GHz data communications network. Two scenarios are considered; the first assumes a base station in the centre of the cabin while the second considers four base stations, transmitting at a lower power, distributed along the cabin. The model first determines the propagation map generated by the base stations. These results are used to establish the transmission power required by the personal mobile devices which is then employed to determine the propagation map of each device. The overall electromagnetic interference map incident on the fuselage resulting from the onboard wireless network is generated by vectorially combining the resulting propagation maps. Results for the two scenarios are presented.peer-reviewe

    Radio Resource Management for D2D-based V2V Communication

    Get PDF
    Direct device-to-device (D2D) communication has been proposed as a possible enabler for vehicle-to-vehicle (V2V) applications, where the incurred intra-cell interference and the stringent latency and reliability requirements are challenging issues. In this paper, we investigate the radio resource management problem for D2D-based V2V communications. Firstly, we analyze and mathematically model the actual requirements for vehicular communications and traditional cellular links. Secondly, we propose a problem formulation to fulfill these requirements, and then a Separate Resource Block allocation and Power control (SRBP) algorithm to solve this problem. Finally, simulations are presented to illustrate the improved performance of the proposed SRBP scheme compared to some other existing methods

    Interference in vehicle-to-vehicle communication networks - analysis, modeling, simulation and assessment

    Get PDF
    In wireless vehicular communication networks the periodic transmission of status updates by all vehicles represents a basic service primitive, in particular for safety related applications. Due to the limited communication resources the question raises how much data each node may provide such that the quality of service required by applications can still be guaranteed under realistic interference conditions. Local broadcasts capacity is introduced and analyzed to tackle this open question
    • …
    corecore