1,070 research outputs found

    Revision in Continuous Space: Unsupervised Text Style Transfer without Adversarial Learning

    Full text link
    Typical methods for unsupervised text style transfer often rely on two key ingredients: 1) seeking the explicit disentanglement of the content and the attributes, and 2) troublesome adversarial learning. In this paper, we show that neither of these components is indispensable. We propose a new framework that utilizes the gradients to revise the sentence in a continuous space during inference to achieve text style transfer. Our method consists of three key components: a variational auto-encoder (VAE), some attribute predictors (one for each attribute), and a content predictor. The VAE and the two types of predictors enable us to perform gradient-based optimization in the continuous space, which is mapped from sentences in a discrete space, to find the representation of a target sentence with the desired attributes and preserved content. Moreover, the proposed method naturally has the ability to simultaneously manipulate multiple fine-grained attributes, such as sentence length and the presence of specific words, when performing text style transfer tasks. Compared with previous adversarial learning based methods, the proposed method is more interpretable, controllable and easier to train. Extensive experimental studies on three popular text style transfer tasks show that the proposed method significantly outperforms five state-of-the-art methods.Comment: Association for the Advancement of Artificial Intelligence. AAAI 202

    Adversarial Variational Embedding for Robust Semi-supervised Learning

    Full text link
    Semi-supervised learning is sought for leveraging the unlabelled data when labelled data is difficult or expensive to acquire. Deep generative models (e.g., Variational Autoencoder (VAE)) and semisupervised Generative Adversarial Networks (GANs) have recently shown promising performance in semi-supervised classification for the excellent discriminative representing ability. However, the latent code learned by the traditional VAE is not exclusive (repeatable) for a specific input sample, which prevents it from excellent classification performance. In particular, the learned latent representation depends on a non-exclusive component which is stochastically sampled from the prior distribution. Moreover, the semi-supervised GAN models generate data from pre-defined distribution (e.g., Gaussian noises) which is independent of the input data distribution and may obstruct the convergence and is difficult to control the distribution of the generated data. To address the aforementioned issues, we propose a novel Adversarial Variational Embedding (AVAE) framework for robust and effective semi-supervised learning to leverage both the advantage of GAN as a high quality generative model and VAE as a posterior distribution learner. The proposed approach first produces an exclusive latent code by the model which we call VAE++, and meanwhile, provides a meaningful prior distribution for the generator of GAN. The proposed approach is evaluated over four different real-world applications and we show that our method outperforms the state-of-the-art models, which confirms that the combination of VAE++ and GAN can provide significant improvements in semisupervised classification.Comment: 9 pages, Accepted by Research Track in KDD 201

    VR-GNN: Variational Relation Vector Graph Neural Network for Modeling both Homophily and Heterophily

    Full text link
    Graph Neural Networks (GNNs) have achieved remarkable success in diverse real-world applications. Traditional GNNs are designed based on homophily, which leads to poor performance under heterophily scenarios. Current solutions deal with heterophily mainly by mixing high-order neighbors or passing signed messages. However, mixing high-order neighbors destroys the original graph structure and passing signed messages utilizes an inflexible message-passing mechanism, which is prone to producing unsatisfactory effects. To overcome the above problems, we propose a novel GNN model based on relation vector translation named Variational Relation Vector Graph Neural Network (VR-GNN). VR-GNN models relation generation and graph aggregation into an end-to-end model based on Variational Auto-Encoder. The encoder utilizes the structure, feature and label to generate a proper relation vector. The decoder achieves superior node representation by incorporating the relation translation into the message-passing framework. VR-GNN can fully capture the homophily and heterophily between nodes due to the great flexibility of relation translation in modeling neighbor relationships. We conduct extensive experiments on eight real-world datasets with different homophily-heterophily properties to verify the effectiveness of our model. The experimental results show that VR-GNN gains consistent and significant improvements against state-of-the-art GNN methods under heterophily, and competitive performance under homophily
    • …
    corecore