1,820,766 research outputs found

    Unfolding the Hierarchy of Voids

    Get PDF
    We present a framework for the hierarchical identification and characterization of voids based on the Watershed Void Finder. The Hierarchical Void Finder is based on a generalization of the scale space of a density field invoked in order to trace the hierarchical nature and structure of cosmological voids. At each level of the hierarchy, the watershed transform is used to identify the voids at that particular scale. By identifying the overlapping regions between watershed basins in adjacent levels, the hierarchical void tree is constructed. Applications on a hierarchical Voronoi model and on a set of cosmological simulations illustrate its potential.Comment: 5 pages, 2 figure

    Structure and evolution of the first CoRoT exoplanets: Probing the Brown Dwarf/Planet overlapping mass regime

    Full text link
    We present detailed structure and evolution calculations for the first transiting extrasolar planets discovered by the space-based CoRoT mission. Comparisons between theoretical and observed radii provide information on the internal composition of the CoRoT objects. We distinguish three different categories of planets emerging from these discoveries and from previous ground-based surveys: (i) planets explained by standard planetary models including irradiation, (ii) abnormally bloated planets and (iii) massive objects belonging to the overlapping mass regime between planets and brown dwarfs. For the second category, we show that tidal heating can explain the relevant CoRoT objects, providing non-zero eccentricities. We stress that the usual assumption of a quick circularization of the orbit by tides, as usually done in transit light curve analysis, is not justified a priori, as suggested recently by Levrard et al. (2009), and that eccentricity analysis should be carefully redone for some observations. Finally, special attention is devoted to CoRoT-3b and to the identification of its very nature: giant planet or brown dwarf ? The radius determination of this object confirms the theoretical mass-radius predictions for gaseous bodies in the substellar regime but, given the present observational uncertainties, does not allow an unambiguous identification of its very nature. This opens the avenue, however, to an observational identification of these two distinct astrophysical populations, brown dwarfs and giant planets, in their overlapping mass range, as done for the case of the 8 Jupiter-mass object Hat-P-2b. (abridged)Comment: 6 pages, 5 figures, accepted for publication in Astronomy and Astrophysic

    A study of the neglected Galactic HII region NGC 2579 and its companion ESO 370-9

    Get PDF
    The Galactic HII region NGC 2579 has stayed undeservedly unexplored due to identification problems which persisted until recently. Both NGC 2579 and its companion ESO 370-9 have been misclassified as planetary or reflection nebula, confused with each other and with other objects. Due to its high surface brightness, high excitation, angular size of few arcminutes and relatively low interstellar extinction, NGC 2579 is an ideal object for investigations in the optical range. Located in the outer Galaxy, NGC 2579 is an excellent object for studying the Galactic chemical abundance gradients. In this paper we present the first comprehensive observational study on the nebular and stellar properties of NGC 2579 and ESO 370-9, including the determination of electron temperature, density structure, chemical composition, kinematics, distance, and the identification and spectral classification of the ionizing stars, and discuss the nature of ESO 370-9. Long slit spectrophotometric data in the optical range were used to derive the nebular electron temperature, density and chemical abundances and for the spectral classification of the ionizing star candidates. Halpha and UBV CCD photometry was carried out to derive stellar distances from spectroscopic parallax and to measure the ionizing photon flux.Comment: To be published in Astronomy & Astrophysic

    Caustic Skeleton & Cosmic Web

    Get PDF
    We present a general formalism for identifying the caustic structure of an evolving mass distribution in an arbitrary dimensional space. For the class of Hamiltonian fluids the identification corresponds to the classification of singularities in Lagrangian catastrophe theory. Based on this we develop a theoretical framework for the formation of the cosmic web, and specifically those aspects that characterize its unique nature: its complex topological connectivity and multiscale spinal structure of sheetlike membranes, elongated filaments and compact cluster nodes. The present work represents an extension of the work by Arnol'd et al., who classified the caustics for the 1- and 2-dimensional Zel'dovich approximation. His seminal work established the role of emerging singularities in the formation of nonlinear structures in the universe. At the transition from the linear to nonlinear structure evolution, the first complex features emerge at locations where different fluid elements cross to establish multistream regions. The classification and characterization of these mass element foldings can be encapsulated in caustic conditions on the eigenvalue and eigenvector fields of the deformation tensor field. We introduce an alternative and transparent proof for Lagrangian catastrophe theory, and derive the caustic conditions for general Lagrangian fluids, with arbitrary dynamics, including dissipative terms and vorticity. The new proof allows us to describe the full 3-dimensional complexity of the gravitationally evolving cosmic matter field. One of our key findings is the significance of the eigenvector field of the deformation field for outlining the spatial structure of the caustic skeleton. We consider the caustic conditions for the 3-dimensional Zel'dovich approximation, extending earlier work on those for 1- and 2-dimensional fluids towards the full spatial richness of the cosmic web

    The Zeldovich approximation: key to understanding Cosmic Web complexity

    Get PDF
    We describe how the dynamics of cosmic structure formation defines the intricate geometric structure of the spine of the cosmic web. The Zeldovich approximation is used to model the backbone of the cosmic web in terms of its singularity structure. The description by Arnold et al. (1982) in terms of catastrophe theory forms the basis of our analysis. This two-dimensional analysis involves a profound assessment of the Lagrangian and Eulerian projections of the gravitationally evolving four-dimensional phase-space manifold. It involves the identification of the complete family of singularity classes, and the corresponding caustics that we see emerging as structure in Eulerian space evolves. In particular, as it is instrumental in outlining the spatial network of the cosmic web, we investigate the nature of spatial connections between these singularities. The major finding of our study is that all singularities are located on a set of lines in Lagrangian space. All dynamical processes related to the caustics are concentrated near these lines. We demonstrate and discuss extensively how all 2D singularities are to be found on these lines. When mapping this spatial pattern of lines to Eulerian space, we find a growing connectedness between initially disjoint lines, resulting in a percolating network. In other words, the lines form the blueprint for the global geometric evolution of the cosmic web.Comment: 37 pages, 21 figures, accepted for publication in MNRA

    How can exact and approximate solutions of Einstein's field equations be compared?

    Full text link
    The problem of comparison of the stationary axisymmetric vacuum solutions obtained within the framework of exact and approximate approaches for the description of the same general relativistic systems is considered. We suggest two ways of carrying out such comparison: (i) through the calculation of the Ernst complex potential associated with the approximate solution whose form on the symmetry axis is subsequently used for the identification of the exact solution possessing the same multipole structure, and (ii) the generation of approximate solutions from exact ones by expanding the latter in series of powers of a small parameter. The central result of our paper is the derivation of the correct approximate analogues of the double-Kerr solution possessing the physically meaningful equilibrium configurations. We also show that the interpretation of an approximate solution originally attributed to it on the basis of some general physical suppositions may not coincide with its true nature established with the aid of a more accurate technique.Comment: 32 pages, 5 figure

    X-ray behaviour of Circinus X-1 - I: X-ray Dips as a diagnostic of periodic behaviour

    Full text link
    We examine the periodic nature of detailed structure (particularly dips) in the RXTE/ASM lightcurve of Circinus X-1. The significant phase wandering of the X-ray maxima suggests their identification with the response on a viscous timescale of the accretion disk to perturbation. We find that the X-ray dips provide a more accurate system clock than the maxima, and thus use these as indicators of the times of periastron passage. We fit a quadratic ephemeris to these dips, and find its predictive power for the X-ray lightcurve to be superior to ephemerides based on the radio flares and the full archival X-ray lightcurve. Under the hypothesis that the dips are tracers of the mass transfer rate from the donor, we use their occurrence rate as a function of orbital phase to explore the (as yet unconstrained) nature of the donor. The high P˙\dot{P} term in the ephemeris provides another piece of evidence that Cir X-1 is in a state of dynamical evolution, and thus is a very young post-supernova system. We further suggest that the radio ``synchrotron nebula'' immediately surrounding Cir X-1 is in fact the remnant of the event that created the compact object, and discuss briefly the evidence for and against such an interpretation.Comment: 11 pages, 11 figures, accepted for publication in MNRA

    The pulsations and potential for seismology of B stars

    Get PDF
    We review the nature of the oscillations of main-sequence and supergiant stars of spectral type B. Seismic tuning of the interior structure parameters of the β\beta Cep stars has been achieved since three years. The results are based on frequencies derived from long-term monitoring and progress in this area is rapid. Oscillations in mid-B stars as well as Be stars are well established by now, but we lack good mode identification to achieve seismic modelling. We provide recent evidence of g-mode pulsations in supergiant B stars. The spherical wavenumbers of their modes are yet unidentified, preventing seismic probing of such evolved hot stars at present. Improving the situation for the three groups of g-mode oscillators requires multi-site long-term high-resolution spectroscopy in combination with either space photometry or ground-based multicolour photometry. The CoRoT programme and its ground-based programme will deliver such data in the very near future.Comment: Invited talk, Proc. SOHO 18 / GONG 2006 / HELAS I Conference: Beyond the spherical Sun. ESA SP-624, K. Fletcher, ed., in press, 8 pages with 5 figure
    corecore