33,669 research outputs found

    Dispersive and diffusive-dispersive shock waves for nonconvex conservation laws

    Get PDF
    We consider two physically and mathematically distinct regularization mechanisms of scalar hyperbolic conservation laws. When the flux is convex, the combination of diffusion and dispersion are known to give rise to monotonic and oscillatory traveling waves that approximate shock waves. The zero-diffusion limits of these traveling waves are dynamically expanding dispersive shock waves (DSWs). A richer set of wave solutions can be found when the flux is non-convex. This review compares the structure of solutions of Riemann problems for a conservation law with non-convex, cubic flux regularized by two different mechanisms: 1) dispersion in the modified Korteweg--de Vries (mKdV) equation; and 2) a combination of diffusion and dispersion in the mKdV-Burgers equation. In the first case, the possible dynamics involve two qualitatively different types of DSWs, rarefaction waves (RWs) and kinks (monotonic fronts). In the second case, in addition to RWs, there are traveling wave solutions approximating both classical (Lax) and non-classical (undercompressive) shock waves. Despite the singular nature of the zero-diffusion limit and rather differing analytical approaches employed in the descriptions of dispersive and diffusive-dispersive regularization, the resulting comparison of the two cases reveals a number of striking parallels. In contrast to the case of convex flux, the mKdVB to mKdV mapping is not one-to-one. The mKdV kink solution is identified as an undercompressive DSW. Other prominent features, such as shock-rarefactions, also find their purely dispersive counterparts involving special contact DSWs, which exhibit features analogous to contact discontinuities. This review describes an important link between two major areas of applied mathematics, hyperbolic conservation laws and nonlinear dispersive waves.Comment: Revision from v2; 57 pages, 19 figure

    The theory of optical dispersive shock waves in photorefractive media

    Get PDF
    The theory of optical dispersive shocks generated in propagation of light beams through photorefractive media is developed. Full one-dimensional analytical theory based on the Whitham modulation approach is given for the simplest case of sharp step-like initial discontinuity in a beam with one-dimensional strip-like geometry. This approach is confirmed by numerical simulations which are extended also to beams with cylindrical symmetry. The theory explains recent experiments where such dispersive shock waves have been observed.Comment: 26 page

    Refraction of dispersive shock waves

    Get PDF
    We study a dispersive counterpart of the classical gas dynamics problem of the interaction of a shock wave with a counter-propagating simple rarefaction wave often referred to as the shock wave refraction. The refraction of a one-dimensional dispersive shock wave (DSW) due to its head-on collision with the centred rarefaction wave (RW) is considered in the framework of defocusing nonlinear Schr\"odinger (NLS) equation. For the integrable cubic nonlinearity case we present a full asymptotic description of the DSW refraction by constructing appropriate exact solutions of the Whitham modulation equations in Riemann invariants. For the NLS equation with saturable nonlinearity, whose modulation system does not possess Riemann invariants, we take advantage of the recently developed method for the DSW description in non-integrable dispersive systems to obtain main physical parameters of the DSW refraction. The key features of the DSW-RW interaction predicted by our modulation theory analysis are confirmed by direct numerical solutions of the full dispersive problem.Comment: 45 pages, 23 figures, minor revisio

    Dam break problem for the focusing nonlinear Schr\"odinger equation and the generation of rogue waves

    Get PDF
    We propose a novel, analytically tractable, scenario of the rogue wave formation in the framework of the small-dispersion focusing nonlinear Schr\"odinger (NLS) equation with the initial condition in the form of a rectangular barrier (a "box"). We use the Whitham modulation theory combined with the nonlinear steepest descent for the semi-classical inverse scattering transform, to describe the evolution and interaction of two counter-propagating nonlinear wave trains --- the dispersive dam break flows --- generated in the NLS box problem. We show that the interaction dynamics results in the emergence of modulated large-amplitude quasi-periodic breather lattices whose amplitude profiles are closely approximated by the Akhmediev and Peregrine breathers within certain space-time domain. Our semi-classical analytical results are shown to be in excellent agreement with the results of direct numerical simulations of the small-dispersion focusing NLS equation.Comment: 29 pages, 15 figures, major revisio

    Complex singularities and PDEs

    Full text link
    In this paper we give a review on the computational methods used to characterize the complex singularities developed by some relevant PDEs. We begin by reviewing the singularity tracking method based on the analysis of the Fourier spectrum. We then introduce other methods generally used to detect the hidden singularities. In particular we show some applications of the Pad\'e approximation, of the Kida method, and of Borel-Polya method. We apply these techniques to the study of the singularity formation of some nonlinear dispersive and dissipative one dimensional PDE of the 2D Prandtl equation, of the 2D KP equation, and to Navier-Stokes equation for high Reynolds number incompressible flows in the case of interaction with rigid boundaries
    corecore