14,225 research outputs found

    Syntactic Separation of Subset Satisfiability Problems

    Get PDF
    Variants of the Exponential Time Hypothesis (ETH) have been used to derive lower bounds on the time complexity for certain problems, so that the hardness results match long-standing algorithmic results. In this paper, we consider a syntactically defined class of problems, and give conditions for when problems in this class require strongly exponential time to approximate to within a factor of (1-epsilon) for some constant epsilon > 0, assuming the Gap Exponential Time Hypothesis (Gap-ETH), versus when they admit a PTAS. Our class includes a rich set of problems from additive combinatorics, computational geometry, and graph theory. Our hardness results also match the best known algorithmic results for these problems

    Approximate Hypergraph Coloring under Low-discrepancy and Related Promises

    Get PDF
    A hypergraph is said to be Ο‡\chi-colorable if its vertices can be colored with Ο‡\chi colors so that no hyperedge is monochromatic. 22-colorability is a fundamental property (called Property B) of hypergraphs and is extensively studied in combinatorics. Algorithmically, however, given a 22-colorable kk-uniform hypergraph, it is NP-hard to find a 22-coloring miscoloring fewer than a fraction 2βˆ’k+12^{-k+1} of hyperedges (which is achieved by a random 22-coloring), and the best algorithms to color the hypergraph properly require β‰ˆn1βˆ’1/k\approx n^{1-1/k} colors, approaching the trivial bound of nn as kk increases. In this work, we study the complexity of approximate hypergraph coloring, for both the maximization (finding a 22-coloring with fewest miscolored edges) and minimization (finding a proper coloring using fewest number of colors) versions, when the input hypergraph is promised to have the following stronger properties than 22-colorability: (A) Low-discrepancy: If the hypergraph has discrepancy β„“β‰ͺk\ell \ll \sqrt{k}, we give an algorithm to color the it with β‰ˆnO(β„“2/k)\approx n^{O(\ell^2/k)} colors. However, for the maximization version, we prove NP-hardness of finding a 22-coloring miscoloring a smaller than 2βˆ’O(k)2^{-O(k)} (resp. kβˆ’O(k)k^{-O(k)}) fraction of the hyperedges when β„“=O(log⁑k)\ell = O(\log k) (resp. β„“=2\ell=2). Assuming the UGC, we improve the latter hardness factor to 2βˆ’O(k)2^{-O(k)} for almost discrepancy-11 hypergraphs. (B) Rainbow colorability: If the hypergraph has a (kβˆ’β„“)(k-\ell)-coloring such that each hyperedge is polychromatic with all these colors, we give a 22-coloring algorithm that miscolors at most kβˆ’Ξ©(k)k^{-\Omega(k)} of the hyperedges when β„“β‰ͺk\ell \ll \sqrt{k}, and complement this with a matching UG hardness result showing that when β„“=k\ell =\sqrt{k}, it is hard to even beat the 2βˆ’k+12^{-k+1} bound achieved by a random coloring.Comment: Approx 201
    • …
    corecore