808 research outputs found

    Algorithms and complexity for approximately counting hypergraph colourings and related problems

    Get PDF
    The past decade has witnessed advancements in designing efficient algorithms for approximating the number of solutions to constraint satisfaction problems (CSPs), especially in the local lemma regime. However, the phase transition for the computational tractability is not known. This thesis is dedicated to the prototypical problem of this kind of CSPs, the hypergraph colouring. Parameterised by the number of colours q, the arity of each hyperedge k, and the vertex maximum degree Δ, this problem falls into the regime of Lovász local lemma when Δ ≲ qᵏ. In prior, however, fast approximate counting algorithms exist when Δ ≲ qᵏ/³, and there is no known inapproximability result. In pursuit of this, our contribution is two-folded, stated as follows. • When q, k ≥ 4 are evens and Δ ≥ 5·qᵏ/², approximating the number of hypergraph colourings is NP-hard. • When the input hypergraph is linear and Δ ≲ qᵏ/², a fast approximate counting algorithm does exist

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Characterizing the Multi-Pass Streaming Complexity for Solving Boolean CSPs Exactly

    Get PDF

    Analog Photonics Computing for Information Processing, Inference and Optimisation

    Full text link
    This review presents an overview of the current state-of-the-art in photonics computing, which leverages photons, photons coupled with matter, and optics-related technologies for effective and efficient computational purposes. It covers the history and development of photonics computing and modern analogue computing platforms and architectures, focusing on optimization tasks and neural network implementations. The authors examine special-purpose optimizers, mathematical descriptions of photonics optimizers, and their various interconnections. Disparate applications are discussed, including direct encoding, logistics, finance, phase retrieval, machine learning, neural networks, probabilistic graphical models, and image processing, among many others. The main directions of technological advancement and associated challenges in photonics computing are explored, along with an assessment of its efficiency. Finally, the paper discusses prospects and the field of optical quantum computing, providing insights into the potential applications of this technology.Comment: Invited submission by Journal of Advanced Quantum Technologies; accepted version 5/06/202

    Gap Preserving Reductions Between Reconfiguration Problems

    Get PDF
    Combinatorial reconfiguration is a growing research field studying problems on the transformability between a pair of solutions for a search problem. For example, in SAT Reconfiguration, for a Boolean formula ? and two satisfying truth assignments ?_? and ?_? for ?, we are asked to determine whether there is a sequence of satisfying truth assignments for ? starting from ?_? and ending with ?_?, each resulting from the previous one by flipping a single variable assignment. We consider the approximability of optimization variants of reconfiguration problems; e.g., Maxmin SAT Reconfiguration requires to maximize the minimum fraction of satisfied clauses of ? during transformation from ?_? to ?_?. Solving such optimization variants approximately, we may be able to obtain a reasonable reconfiguration sequence comprising almost-satisfying truth assignments. In this study, we prove a series of gap-preserving reductions to give evidence that a host of reconfiguration problems are PSPACE-hard to approximate, under some plausible assumption. Our starting point is a new working hypothesis called the Reconfiguration Inapproximability Hypothesis (RIH), which asserts that a gap version of Maxmin CSP Reconfiguration is PSPACE-hard. This hypothesis may be thought of as a reconfiguration analogue of the PCP theorem. Our main result is PSPACE-hardness of approximating Maxmin 3-SAT Reconfiguration of bounded occurrence under RIH. The crux of its proof is a gap-preserving reduction from Maxmin Binary CSP Reconfiguration to itself of bounded degree. Because a simple application of the degree reduction technique using expander graphs due to Papadimitriou and Yannakakis (J. Comput. Syst. Sci., 1991) does not preserve the perfect completeness, we modify the alphabet as if each vertex could take a pair of values simultaneously. To accomplish the soundness requirement, we further apply an explicit family of near-Ramanujan graphs and the expander mixing lemma. As an application of the main result, we demonstrate that under RIH, optimization variants of popular reconfiguration problems are PSPACE-hard to approximate, including Nondeterministic Constraint Logic due to Hearn and Demaine (Theor. Comput. Sci., 2005), Independent Set Reconfiguration, Clique Reconfiguration, and Vertex Cover Reconfiguration

    Electron Thermal Runaway in Atmospheric Electrified Gases: a microscopic approach

    Get PDF
    Thesis elaborated from 2018 to 2023 at the Instituto de Astrofísica de Andalucía under the supervision of Alejandro Luque (Granada, Spain) and Nikolai Lehtinen (Bergen, Norway). This thesis presents a new database of atmospheric electron-molecule collision cross sections which was published separately under the DOI : With this new database and a new super-electron management algorithm which significantly enhances high-energy electron statistics at previously unresolved ratios, the thesis explores general facets of the electron thermal runaway process relevant to atmospheric discharges under various conditions of the temperature and gas composition as can be encountered in the wake and formation of discharge channels

    Novel neural architectures & algorithms for efficient inference

    Get PDF
    In the last decade, the machine learning universe embraced deep neural networks (DNNs) wholeheartedly with the advent of neural architectures such as recurrent neural networks (RNNs), convolutional neural networks (CNNs), transformers, etc. These models have empowered many applications, such as ChatGPT, Imagen, etc., and have achieved state-of-the-art (SOTA) performance on many vision, speech, and language modeling tasks. However, SOTA performance comes with various issues, such as large model size, compute-intensive training, increased inference latency, higher working memory, etc. This thesis aims at improving the resource efficiency of neural architectures, i.e., significantly reducing the computational, storage, and energy consumption of a DNN without any significant loss in performance. Towards this goal, we explore novel neural architectures as well as training algorithms that allow low-capacity models to achieve near SOTA performance. We divide this thesis into two dimensions: \textit{Efficient Low Complexity Models}, and \textit{Input Hardness Adaptive Models}. Along the first dimension, i.e., \textit{Efficient Low Complexity Models}, we improve DNN performance by addressing instabilities in the existing architectures and training methods. We propose novel neural architectures inspired by ordinary differential equations (ODEs) to reinforce input signals and attend to salient feature regions. In addition, we show that carefully designed training schemes improve the performance of existing neural networks. We divide this exploration into two parts: \textsc{(a) Efficient Low Complexity RNNs.} We improve RNN resource efficiency by addressing poor gradients, noise amplifications, and BPTT training issues. First, we improve RNNs by solving ODEs that eliminate vanishing and exploding gradients during the training. To do so, we present Incremental Recurrent Neural Networks (iRNNs) that keep track of increments in the equilibrium surface. Next, we propose Time Adaptive RNNs that mitigate the noise propagation issue in RNNs by modulating the time constants in the ODE-based transition function. We empirically demonstrate the superiority of ODE-based neural architectures over existing RNNs. Finally, we propose Forward Propagation Through Time (FPTT) algorithm for training RNNs. We show that FPTT yields significant gains compared to the more conventional Backward Propagation Through Time (BPTT) scheme. \textsc{(b) Efficient Low Complexity CNNs.} Next, we improve CNN architectures by reducing their resource usage. They require greater depth to generate high-level features, resulting in computationally expensive models. We design a novel residual block, the Global layer, that constrains the input and output features by approximately solving partial differential equations (PDEs). It yields better receptive fields than traditional convolutional blocks and thus results in shallower networks. Further, we reduce the model footprint by enforcing a novel inductive bias that formulates the output of a residual block as a spatial interpolation between high-compute anchor pixels and low-compute cheaper pixels. This results in spatially interpolated convolutional blocks (SI-CNNs) that have better compute and performance trade-offs. Finally, we propose an algorithm that enforces various distributional constraints during training in order to achieve better generalization. We refer to this scheme as distributionally constrained learning (DCL). In the second dimension, i.e., \textit{Input Hardness Adaptive Models}, we introduce the notion of the hardness of any input relative to any architecture. In the first dimension, a neural network allocates the same resources, such as compute, storage, and working memory, for all the inputs. It inherently assumes that all examples are equally hard for a model. In this dimension, we challenge this assumption using input hardness as our reasoning that some inputs are relatively easy for a network to predict compared to others. Input hardness enables us to create selective classifiers wherein a low-capacity network handles simple inputs while abstaining from a prediction on the complex inputs. Next, we create hybrid models that route the hard inputs from the low-capacity abstaining network to a high-capacity expert model. We design various architectures that adhere to this hybrid inference style. Further, input hardness enables us to selectively distill the knowledge of a high-capacity model into a low-capacity model by cleverly discarding hard inputs during the distillation procedure. Finally, we conclude this thesis by sketching out various interesting future research directions that emerge as an extension of different ideas explored in this work

    Parameterized Graph Modification Beyond the Natural Parameter

    Get PDF
    corecore