745 research outputs found

    Reverse k Nearest Neighbor Search over Trajectories

    Full text link
    GPS enables mobile devices to continuously provide new opportunities to improve our daily lives. For example, the data collected in applications created by Uber or Public Transport Authorities can be used to plan transportation routes, estimate capacities, and proactively identify low coverage areas. In this paper, we study a new kind of query-Reverse k Nearest Neighbor Search over Trajectories (RkNNT), which can be used for route planning and capacity estimation. Given a set of existing routes DR, a set of passenger transitions DT, and a query route Q, a RkNNT query returns all transitions that take Q as one of its k nearest travel routes. To solve the problem, we first develop an index to handle dynamic trajectory updates, so that the most up-to-date transition data are available for answering a RkNNT query. Then we introduce a filter refinement framework for processing RkNNT queries using the proposed indexes. Next, we show how to use RkNNT to solve the optimal route planning problem MaxRkNNT (MinRkNNT), which is to search for the optimal route from a start location to an end location that could attract the maximum (or minimum) number of passengers based on a pre-defined travel distance threshold. Experiments on real datasets demonstrate the efficiency and scalability of our approaches. To the best of our best knowledge, this is the first work to study the RkNNT problem for route planning.Comment: 12 page

    CSD: Discriminance with Conic Section for Improving Reverse k Nearest Neighbors Queries

    Full text link
    The reverse kk nearest neighbor (RkkNN) query finds all points that have the query point as one of their kk nearest neighbors (kkNN), where the kkNN query finds the kk closest points to its query point. Based on the characteristics of conic section, we propose a discriminance, named CSD (Conic Section Discriminance), to determine points whether belong to the RkkNN set without issuing any queries with non-constant computational complexity. By using CSD, we also implement an efficient RkkNN algorithm CSD-RkkNN with a computational complexity at O(k1.5logk)O(k^{1.5}\cdot log\,k). The comparative experiments are conducted between CSD-RkkNN and other two state-of-the-art RkNN algorithms, SLICE and VR-RkkNN. The experimental results indicate that the efficiency of CSD-RkkNN is significantly higher than its competitors

    Fine-Grained Complexity Analysis of Two Classic TSP Variants

    Get PDF
    We analyze two classic variants of the Traveling Salesman Problem using the toolkit of fine-grained complexity. Our first set of results is motivated by the Bitonic TSP problem: given a set of nn points in the plane, compute a shortest tour consisting of two monotone chains. It is a classic dynamic-programming exercise to solve this problem in O(n2)O(n^2) time. While the near-quadratic dependency of similar dynamic programs for Longest Common Subsequence and Discrete Frechet Distance has recently been proven to be essentially optimal under the Strong Exponential Time Hypothesis, we show that bitonic tours can be found in subquadratic time. More precisely, we present an algorithm that solves bitonic TSP in O(nlog2n)O(n \log^2 n) time and its bottleneck version in O(nlog3n)O(n \log^3 n) time. Our second set of results concerns the popular kk-OPT heuristic for TSP in the graph setting. More precisely, we study the kk-OPT decision problem, which asks whether a given tour can be improved by a kk-OPT move that replaces kk edges in the tour by kk new edges. A simple algorithm solves kk-OPT in O(nk)O(n^k) time for fixed kk. For 2-OPT, this is easily seen to be optimal. For k=3k=3 we prove that an algorithm with a runtime of the form O~(n3ϵ)\tilde{O}(n^{3-\epsilon}) exists if and only if All-Pairs Shortest Paths in weighted digraphs has such an algorithm. The results for k=2,3k=2,3 may suggest that the actual time complexity of kk-OPT is Θ(nk)\Theta(n^k). We show that this is not the case, by presenting an algorithm that finds the best kk-move in O(n2k/3+1)O(n^{\lfloor 2k/3 \rfloor + 1}) time for fixed k3k \geq 3. This implies that 4-OPT can be solved in O(n3)O(n^3) time, matching the best-known algorithm for 3-OPT. Finally, we show how to beat the quadratic barrier for k=2k=2 in two important settings, namely for points in the plane and when we want to solve 2-OPT repeatedly.Comment: Extended abstract appears in the Proceedings of the 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016

    Algorithms for Stable Matching and Clustering in a Grid

    Full text link
    We study a discrete version of a geometric stable marriage problem originally proposed in a continuous setting by Hoffman, Holroyd, and Peres, in which points in the plane are stably matched to cluster centers, as prioritized by their distances, so that each cluster center is apportioned a set of points of equal area. We show that, for a discretization of the problem to an n×nn\times n grid of pixels with kk centers, the problem can be solved in time O(n2log5n)O(n^2 \log^5 n), and we experiment with two slower but more practical algorithms and a hybrid method that switches from one of these algorithms to the other to gain greater efficiency than either algorithm alone. We also show how to combine geometric stable matchings with a kk-means clustering algorithm, so as to provide a geometric political-districting algorithm that views distance in economic terms, and we experiment with weighted versions of stable kk-means in order to improve the connectivity of the resulting clusters.Comment: 23 pages, 12 figures. To appear (without the appendices) at the 18th International Workshop on Combinatorial Image Analysis, June 19-21, 2017, Plovdiv, Bulgari

    Measuring Galaxy Environments with Deep Redshift Surveys

    Full text link
    We study the applicability of several galaxy environment measures (n^th-nearest-neighbor distance, counts in an aperture, and Voronoi volume) within deep redshift surveys. Mock galaxy catalogs are employed to mimic representative photometric and spectroscopic surveys at high redshift (z ~ 1). We investigate the effects of survey edges, redshift precision, redshift-space distortions, and target selection upon each environment measure. We find that even optimistic photometric redshift errors (\sigma_z = 0.02) smear out the line-of-sight galaxy distribution irretrievably on small scales; this significantly limits the application of photometric redshift surveys to environment studies. Edges and holes in a survey field dramatically affect the estimation of environment, with the impact of edge effects depending upon the adopted environment measure. These edge effects considerably limit the usefulness of smaller survey fields (e.g. the GOODS fields) for studies of galaxy environment. In even the poorest groups and clusters, redshift-space distortions limit the effectiveness of each environment statistic; measuring density in projection (e.g. using counts in a cylindrical aperture or a projected n^th-nearest-neighbor distance measure) significantly improves the accuracy of measures in such over-dense environments. For the DEEP2 Galaxy Redshift Survey, we conclude that among the environment estimators tested the projected n^th-nearest-neighbor distance measure provides the most accurate estimate of local galaxy density over a continuous and broad range of scales.Comment: 17 pages including 16 figures, accepted to Ap

    Boundary-Sensitive Approach for Approximate Nearest-Neighbor Classification

    Get PDF
    The problem of nearest-neighbor classification is a fundamental technique in machine-learning. Given a training set P of n labeled points in ?^d, and an approximation parameter 0 < ? ? 1/2, any unlabeled query point should be classified with the class of any of its ?-approximate nearest-neighbors in P. Answering these queries efficiently has been the focus of extensive research, proposing techniques that are mainly tailored towards resolving the more general problem of ?-approximate nearest-neighbor search. While the latest can only hope to provide query time and space complexities dependent on n, the problem of nearest-neighbor classification accepts other parameters more suitable to its analysis. Such is the number k_? of ?-border points, which describes the complexity of boundaries between sets of points of different classes. This paper presents a new data structure called Chromatic AVD. This is the first approach for ?-approximate nearest-neighbor classification whose space and query time complexities are only dependent on ?, k_? and d, while being independent on both n and ?, the spread of P
    corecore