260 research outputs found

    Array Convolutional Low-Density Parity-Check Codes

    Full text link
    This paper presents a design technique for obtaining regular time-invariant low-density parity-check convolutional (RTI-LDPCC) codes with low complexity and good performance. We start from previous approaches which unwrap a low-density parity-check (LDPC) block code into an RTI-LDPCC code, and we obtain a new method to design RTI-LDPCC codes with better performance and shorter constraint length. Differently from previous techniques, we start the design from an array LDPC block code. We show that, for codes with high rate, a performance gain and a reduction in the constraint length are achieved with respect to previous proposals. Additionally, an increase in the minimum distance is observed.Comment: 4 pages, 2 figures, accepted for publication in IEEE Communications Letter

    Stopping Set Distributions of Some Linear Codes

    Full text link
    Stopping sets and stopping set distribution of an low-density parity-check code are used to determine the performance of this code under iterative decoding over a binary erasure channel (BEC). Let CC be a binary [n,k][n,k] linear code with parity-check matrix HH, where the rows of HH may be dependent. A stopping set SS of CC with parity-check matrix HH is a subset of column indices of HH such that the restriction of HH to SS does not contain a row of weight one. The stopping set distribution {Ti(H)}i=0n\{T_i(H)\}_{i=0}^n enumerates the number of stopping sets with size ii of CC with parity-check matrix HH. Note that stopping sets and stopping set distribution are related to the parity-check matrix HH of CC. Let HH^{*} be the parity-check matrix of CC which is formed by all the non-zero codewords of its dual code CC^{\perp}. A parity-check matrix HH is called BEC-optimal if Ti(H)=Ti(H),i=0,1,...,nT_i(H)=T_i(H^*), i=0,1,..., n and HH has the smallest number of rows. On the BEC, iterative decoder of CC with BEC-optimal parity-check matrix is an optimal decoder with much lower decoding complexity than the exhaustive decoder. In this paper, we study stopping sets, stopping set distributions and BEC-optimal parity-check matrices of binary linear codes. Using finite geometry in combinatorics, we obtain BEC-optimal parity-check matrices and then determine the stopping set distributions for the Simplex codes, the Hamming codes, the first order Reed-Muller codes and the extended Hamming codes.Comment: 33 pages, submitted to IEEE Trans. Inform. Theory, Feb. 201

    Low-Floor Tanner Codes via Hamming-Node or RSCC-Node Doping

    Get PDF
    We study the design of structured Tanner codes with low error-rate floors on the AWGN channel. The design technique involves the “doping” of standard LDPC (proto-)graphs, by which we mean Hamming or recursive systematic convolutional (RSC) code constraints are used together with single-parity-check (SPC) constraints to construct a code’s protograph. We show that the doping of a “good” graph with Hamming or RSC codes is a pragmatic approach that frequently results in a code with a good threshold and very low error-rate floor. We focus on low-rate Tanner codes, in part because the design of low-rate, low-floor LDPC codes is particularly difficult. Lastly, we perform a simple complexity analysis of our Tanner codes and examine the performance of lower-complexity, suboptimal Hamming-node decoders
    corecore