1,328 research outputs found

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape

    Evaluation of SLA-based decision strategies for VM scheduling in cloud data centers

    Get PDF
    Copyright © 2016 held by owner/author(s). Service level agreements (SLAs) gain more and more importance in the area of cloud computing. An SLA is a contract between a customer and a cloud service provider (CSP) in which the CSP guarantees functional and non-functional quality of service parameters for cloud services. Since CSPs have to pay for the hardware used as well as penalties for violating SLAs, they are eager to fulfill these agreements while at the same time optimizing the utilization of their resources. In this paper we examine SLA-aware VM scheduling strategies for cloud data centers. The service level objectives considered are resource usage and availability. The sample resources are CPU and RAM. They can be overprovisioned by the CSPs which is the main leverage to increase their revenue. The availability of a VM is affected by migrating it within and between data centers. To get realistic results, we simulate the effect of the strategies using the FederatedCloudSim framework and real-world workload traces of business-critical VMs. Our evaluation shows that there are considerable differences between the scheduling strategies in terms of SLA violations and the number of migrations. From all strategies considered, the combination of the Minimization of Migrations strategy for VM selection and the Worst Fit strategy for host selection achieves the best results
    corecore