16 research outputs found

    On a concept of genericity for RLC networks

    Get PDF
    A recent definition of genericity for resistor-inductor-capacitor (RLC) networks is that the realisability set of the network has dimension one more than the number of elements in the network. We prove that such networks are minimal in the sense that it is not possible to realise a set of dimension n with fewer than n-1 elements. We provide an easily testable necessary and sufficient condition for genericity in terms of the derivative of the mapping from element values to impedance parameters, which is illustrated by several examples. We show that the number of resistors in a generic RLC network cannot exceed k+1 where k is the order of the impedance. With an example, we show that an impedance function of lower order than the number of reactive elements in the network need not imply that the network is non-generic. We prove that a network with a non-generic subnetwork is itself non-generic. Finally we show that any positive-real impedance can be realised by a generic network. In particular we show that sub-networks that are used in the important Bott-Duffin synthesis method are in fact generic.A. Morelli was supported by the MathWorks studentship - a Cambridge University Trust fund

    On the Synthesis of Passive Networks without Transformers

    Get PDF
    This thesis is concerned with the synthesis of passive networks, motivated by the recent invention of a new mechanical component, the inerter, which establishes a direct analogy between mechanical and electrical networks. We investigate the minimum numbers of inductors, capacitors and resistors required to synthesise a given impedance, with a particular focus on transformerless network synthesis. The conclusions of this thesis are relevant to the design of compact and cost-effective mechanical and electrical networks for a broad range of applications. In Part 1, we unify the Laplace-domain and phasor approach to the analysis of transformerless networks, using the framework of the behavioural approach. We show that the autonomous part of any driving-point trajectory of a transformerless network decays to zero as time passes. We then consider the trajectories of a transformerless network, which describe the permissible currents and voltages in the elements and at the driving-point terminals. We show that the autonomous part of any trajectory of a transformerless network is bounded into the future, but need not decay to zero. We then show that the value of the network's impedance at a particular point in the closed right half plane can be determined by finding a special type of network trajectory. In Part 2, we establish lower bounds on the numbers of inductors and capacitors required to realise a given impedance. These lower bounds are expressed in terms of the extended Cauchy index for the impedance, a property defined in that part. Explicit algebraic conditions are also stated in terms of a Sylvester and a Bezoutian matrix. The lower bounds are generalised to multi-port networks. Also, a connection is established with continued fraction expansions, with implications for network synthesis. In Part 3, we first present four procedures for the realisation of a general impedance with a transformerless network. These include two known procedures, the Bott-Duffin procedure and the Reza-Pantell-Fialkow-Gerst simplification, and two new procedures. We then show that the networks produced by the Bott-Duffin procedure, and one of our new alternatives, contain the least possible number of reactive elements (inductors and capacitors) and resistors, for the realisation of a certain type of impedance (called a biquadratic minimum function), among all series-parallel networks. Moreover, we show that these procedures produce the only series-parallel networks which contain exactly six reactive elements and two resistors and realise a biquadratic minimum function. We further show that the networks produced by the Reza-Pantell-Fialkow-Gerst simplification, and the second of our new alternatives, contain the least possible number of reactive elements and resistors for the realisation of almost all biquadratic minimum functions among the class of transformerless networks. We group the networks obtained by these two procedures into two quartets, and we show that these are the only quartets of transformerless networks which contain exactly five reactive elements and two resistors and realise all of the biquadratic minimum functions. Finally, we investigate the minimum number of reactive elements required to realise certain impedances, of greater complexity than the biquadratic minimum function, with series-parallel networks.Funded in part by the EPSRC Programme Grant on Control For Energy and Sustainabilit

    On a concept of genericity for RLC networks

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordA recent definition of genericity for resistor-inductor-capacitor (RLC) networks is that the realisability set of the network has dimension one more than the number of elements in the network. We prove that such networks are minimal in the sense that it is not possible to realise a set of dimension n with fewer than n − 1 elements. We provide an easily testable necessary and sufficient condition for genericity in terms of the derivative of the mapping from element values to impedance parameters, which is illustrated by several examples. We show that the number of resistors in a generic RLC network cannot exceed k + 1 where k is the order of the impedance. With an example, we show that an impedance function of lower order than the number of reactive elements in the network need not imply that the network is non-generic. We prove that a network with a non-generic subnetwork is itself non-generic. Finally we show that any positive-real impedance can be realised by a generic nMathWork

    Behavioral realizations using companion matrices and the smith form

    Get PDF
    This is the author accepted manuscript. The final version is available from Society for Industrial and Applied Mathematics via the DOI in this record.Classical procedures for the realization of transfer functions are unable to represent uncontrollable behaviors. In this paper, we use companion matrices and the Smith form to derive explicit observable realizations for a general (not necessarily controllable) linear time-invariant be- havior. We then exploit the properties of companion matrices to efficiently compute trajectories, and the solutions to Lyapunov equations, for the realizations obtained. The results are motivated by the important role played by uncontrollable behaviors in the context of physical systems such as passive electrical and mechanical networks
    corecore