44 research outputs found

    Tractable constraints on ordered domains

    Get PDF
    AbstractFinding solutions to a constraint satisfaction problem is known to be an NP-complete problem in general, but may be tractable in cases where either the set of allowed constraints or the graph structure is restricted. In this paper we identify a restricted set of contraints which gives rise to a class of tractable problems. This class generalizes the notion of a Horn formula in propositional logic to larger domain sizes. We give a polynomial time algorithm for solving such problems, and prove that the class of problems generated by any larger set of constraints is NP-complete

    Tractability in Constraint Satisfaction Problems: A Survey

    Get PDF
    International audienceEven though the Constraint Satisfaction Problem (CSP) is NP-complete, many tractable classes of CSP instances have been identified. After discussing different forms and uses of tractability, we describe some landmark tractable classes and survey recent theoretical results. Although we concentrate on the classical CSP, we also cover its important extensions to infinite domains and optimisation, as well as #CSP and QCSP

    A Graph Based Backtracking Algorithm for Solving General CSPs

    Get PDF
    Many AI tasks can be formalized as constraint satisfaction problems (CSPs), which involve finding values for variables subject to constraints. While solving a CSP is an NP-complete task in general, tractable classes of CSPs have been identified based on the structure of the underlying constraint graphs. Much effort has been spent on exploiting structural properties of the constraint graph to improve the efficiency of finding a solution. These efforts contributed to development of a class of CSP solving algorithms called decomposition algorithms. The strength of CSP decomposition is that its worst-case complexity depends on the structural properties of the constraint graph and is usually better than the worst-case complexity of search methods. Its practical application is limited, however, since it cannot be applied if the CSP is not decomposable. In this paper, we propose a graph based backtracking algorithm called omega-CDBT, which shares merits and overcomes the weaknesses of both decomposition and search approaches

    On neighbourhood singleton-style consistencies for qualitative spatial and temporal reasoning

    Get PDF
    Given a qualitative constraint network (QCN), a singleton-style consistency focuses on each base relation (atom) of a constraint separately, rather than the entire constraint altogether. This local consistency is essential for tackling fundamental reasoning problems associated with QCNs, such as minimal labeling, but can suffer from redundant constraint checks, especially when checks occur far from where the pruning usually takes place. In this paper, we propose singleton-style consistencies that are applied just on the neighbourhood of a singleton-checked constraint instead of the whole network. We make a theoretical comparison with existing consistencies and consequently prove some properties of the new ones. Further, we propose algorithms to enforce our consistencies, as well as parsimonious variants thereof, that are more efficient in practice than the state of the art. An experimental evaluation with random and structured QCNs of Allen's Interval Algebra in the phase transition region demonstrates the potential of our approach.acceptedVersionPeer reviewe

    Evaluating sets of multi-attribute alternatives with uncertain preferences

    Get PDF
    In a decision-making problem, there can be uncertainty regarding the user preferences concerning the available alternatives. Thus, for a decision support system, it is essential to analyse the user preferences to make personalised recommendations. In this thesis we focus on Multiattribute Utility Theory (MAUT) which aims to define user preference models and elicitation procedures for alternatives evaluated with a vector of a fixed number of conflicting criteria. In this context, a preference model is usually represented with a real value function over the criteria used to evaluate alternatives, and an elicitation procedure is a process of defining such value function. The most preferred alternative will then be the one that maximises the value function. With MAUT models, it is common to represent the uncertainty of the user preferences with a parameterised value function. Each instantiation of this parameterisation then represents a user preference model compatible with the preference information collected so far. For example, a common linear value function is the weighted sum of the criteria evaluating an alternative, which is parameterised with respect to the set of weights. We focus on this type of preference models and in particular on value functions evaluating sets of alternatives rather single alternatives. These value functions can be used for example to define if a set of alternatives is preferred to another one, or which is the worst-case loss in terms of utility units of recommending a set of alternatives. We define the concept of setwise minimal equivalent subset (SME) and algorithms for its computation. Briefly, SME is the subset of an input set of alternatives with equivalent value function and minimum cardinality. We generalise standard preference relations used to compare single alternatives with the purpose of comparing sets of alternatives. We provide computational procedures to compute SME and evaluate preference relations with particular focus on linear value functions. We make extensive use of the Minimax Regret criterion, which is a common method to evaluate alternatives for potential questions and recommendations with uncertain value functions. It prescribes an outcome that minimises the worst-case loss with respect to all the possible parameterisation of the value function. In particular, we focus on its setwise generalisation, namely \textit{Setwise Minimax Regret} (SMR), which is the worst-case loss of recommending a set of alternatives. We provide a novel and efficient procedure for the computation of the SMR when supposing a linear value function. We also present a novel incremental preference elicitation framework for a supplier selection process, where a realistic medium-size factory inspires constraints and objectives of the underlying optimization problem. This preference elicitation framework applies for generic multiattribute combinatorial problems based on a linear preference model, and it is particularly useful when the computation of the set of Pareto optimal alternatives is practically unfeasible

    Linear Datalog and Bounded Path Duality of Relational Structures

    Full text link
    In this paper we systematically investigate the connections between logics with a finite number of variables, structures of bounded pathwidth, and linear Datalog Programs. We prove that, in the context of Constraint Satisfaction Problems, all these concepts correspond to different mathematical embodiments of a unique robust notion that we call bounded path duality. We also study the computational complexity implications of the notion of bounded path duality. We show that every constraint satisfaction problem \csp(\best) with bounded path duality is solvable in NL and that this notion explains in a uniform way all families of CSPs known to be in NL. Finally, we use the results developed in the paper to identify new problems in NL

    Persistent homology : categorical structural theorem and stability through representations of quivers

    Get PDF
    Field of study: Mathematics.Dr. Calin Chindris, Dissertation Supervisor; Dr. Jan Segert, Dissertation Supervisor.Includes vita."May 2018."The purpose of this thesis is to advance the study and application of the field of persistent homology through both categorical and quiver theoretic viewpoints. While persistent homology has its roots in these topics, there is a wealth of material that can still be offered up by using these familiar lenses at new angles. There are three chapters of results. Chapter 3 discusses a categorical framework for persistent homology that circumvents quiver theoretic structure, both in practice and in theory, by means of viewing the process as factored through a quotient category. In this chapter, the widely used persistent homology algorithm collectively known as reduction is presented in terms of a matrix factorization result. The remaining results rest on a quiver theoretic approach. Chapter 4 focuses on an algebraic stability theorem for generalized persistence modules for a certain class of finite posets. Both the class of posets and their discretized nature are what make the results unique, while the structure is taken with inspiration from the work of Ulrich Bauer and Michael Lesnick. Chapter 5 deals with taking directed limits of posets and the subsequent expansion of categories to show that the discretized work in the second section recovers classical results over the continuum.Includes bibliographical references (pages 161-166)

    Harnessing tractability in constraint satisfaction problems

    Get PDF
    The Constraint Satisfaction Problem (CSP) is a fundamental NP-complete problem with many applications in artificial intelligence. This problem has enjoyed considerable scientific attention in the past decades due to its practical usefulness and the deep theoretical questions it relates to. However, there is a wide gap between practitioners, who develop solving techniques that are efficient for industrial instances but exponential in the worst case, and theorists who design sophisticated polynomial-time algorithms for restrictions of CSP defined by certain algebraic properties. In this thesis we attempt to bridge this gap by providing polynomial-time algorithms to test for membership in a selection of major tractable classes. Even if the instance does not belong to one of these classes, we investigate the possibility of decomposing efficiently a CSP instance into tractable subproblems through the lens of parameterized complexity. Finally, we propose a general framework to adapt the concept of kernelization, central to parameterized complexity but hitherto rarely used in practice, to the context of constraint reasoning. Preliminary experiments on this last contribution show promising results

    Performance Bounds for Synchronized Queueing Networks

    Get PDF
    Las redes de Petri estocásticas constituyen un modelo unificado de las diferentes extensiones de redes de colas con sincronizaciones existentes en la literatura, válido para el diseño y análisis de prestaciones de sistemas informáticos distribuidos. En este trabajo se proponen técnicas de cálculo de cotas superiores e inferiores de las prestaciones de redes de Petri estocásticas en estado estacionario. Las cotas obtenidas son calculables en tiempo polinómico en el tamaño del modelo, por medio de la resolución de ciertos problemas de programación lineal definidos a partir de la matriz de incidencia de la red (en este sentido, las técnicas desarrolladas pueden considerarse estructurales). Las cotas calculadas dependen sólamente de los valores medios de las variables aleatorias que describen la temporización del sistema, y son independientes de los momentos de mayor orden. Esta independencia de la forma de las distribuciones de probabilidad asociadas puede considerarse como una útil generalización de otros resultados existentes para distribuciones particulares, puesto que los momentos de orden superior son, habitualmente, desconocidos en la realidad y difíciles de estimar. Finalmente, las técnicas desarrolladas se aplican al análisis de diferentes ejemplos tomados de la literatura sobre sistemas informáticos distribuidos y sistemas de fabricación. ******* Product form queueing networks have long been used for the performance evaluation of computer systems. Their success has been due to their capability of naturally expressing sharing of resources and queueing, that are typical situations of traditional computer systems, as well as to their efficient solution algorithms, of polynomial complexity on the size of the model. Unfortunately, the introduction of synchronization constraints usually destroys the product form solution, so that general concurrent and distributed systems are not easily studied with this class of models. Petri nets have been proved specially adequate to model parallel and distributed systems. Moreover, they have a well-founded theory of analysis that allows to investigate a great number of qualitative properties of the system. In the original definition, Petri nets did not include the notion of time, and tried to model only the logical behaviour of systems by describing the causal relations existing among events. This approach showed its power in the specification and analysis of concurrent systems in a way independent of the concept of time. Nevertheless the introduction of a timing specification is essential if we want to use this class of models for the performance evaluation of distributed systems. One of the main problems in the actual use of timed and stochastic Petri net models for the quantitative evaluation of large systems is the explosion of the computational complexity of the analysis algorithms. In general, exact performance results are obtained from the numerical solution of a continuous time Markov chain, whose dimension is given by the size of the state space of the model. Structural computation of exact performance measures has been possible for some subclasses of nets such as those with state machine topology. These nets, under certain assumptions on the stochastic interpretation are isomorphic to Gordon and Newell's networks, in queueing theory terminology. In the general case, efficient methods for the derivation of performance measures are still needed. Two complementary approaches to the derivation of exact measures for the analysis of distributed systems are the utilization of approximation techniques and the computation of bounds. Approximate values for the performance parameters are in general more efficiently derived than the exact ones. On the other hand, "exactness" only exists in theory! In other words, numerical algorithms must be applied in practice for the computation of exact values, therefore making errors is inevitable. Performance bounds are useful in the preliminary phases of the design of a system, in which many parameters are not known accurately. Several alternatives for those parameters should be quickly evaluated, and rejected those that are clearly bad. Exact (and even approximate) solutions would be computationally very expensive. Bounds become useful in these instances since they usually require much less computation effort. The computation of upper and lower bounds for the steady-state performance of timed and stochastic Petri nets is considered in this work. In particular, we study the throughput of transitions, defined as the average number of firings per time unit. For this measure we try to compute upper and lower bounds in polynomial time on the size of the net model, by means of proper linear programming problems defined from the incidence matrix of the net (in this sense, we develop structural techniques). These bounds depend only on the mean values and not on the higher moments of the probability distribution functions of the random variables that describe the timing of the system. The independence of the probability distributions can be viewed as a useful generalization of the performance results, since higher moments of the delays are usually unknown for real cases, and difficult to estimate and assess. From a different perspective, the obtained results can be applied to the analysis of queueing networks extended with some synchronization schemes. Monoclass queueing networks can be mapped on stochastic Petri nets. On the other hand, stochastic Petri nets can be interpreted as monoclass queueing networks augmented with synchronization primitives. Concerning the presentation of this manuscript, it should be mentioned that chapter 1 has been written with the object of giving the reader an outline of the stochastic Petri net model: its definition, terminology, basic properties, and related concepts, together with its deep relation with other classic stochastic network models. Chapter 2 is devoted to the presentation of the net subclasses considered in the rest of the work. The classification presented here is quite different from the one which is usual in the framework of Petri nets. The reason lies on the fact that our classification criterion, the computability of visit ratios for transitions, is introduced for the first time in the field of stochastic Petri nets in this work. The significance of that criterion is based on the important role that the visit ratios play in the computation of upper and lower bounds for the performance of the models. Nevertheless, classical important net subclasses are identified here in terms of the computability of their visit ratios from different parameters of the model. Chapter 3 is concerned with the computation of reachable upper and lower bounds for the most restrictive subclass of those presented in chapter 2: marked graphs. The explanation of this fact is easy to understand. The more simple is the model the more accessible will be the techniques an ideas for the development of good results. Chapter 4 provides a generalization for live and bounded free choice nets of the results presented in the previous chapter. Quality of obtained bounds is similar to that for strongly connected marked graphs: throughput lower bounds are reachable for bounded nets while upper bounds are reachable for 1-bounded nets. Chapter 5 considers the extension to other net subclasses, like mono-T-semiflow nets, FRT-nets, totally open deterministic systems of sequential processes, and persistent nets. The results are of diverse colours. For mono-T-semiflow nets and, therefore, for general FRT-nets, it is not possible (so far) to obtain reachable throughput bounds. On the other hand, for bounded ordinary persistent nets, tight throughput upper bounds are derived. Moreover, in the case of totally open deterministic systems of sequential processes the exact steady-state performance measures can be computed in polynomial time on the net size. In chapter 6 bounds for other interesting performance measures are derived from throughput bounds and from classical queueing theory laws. After that, we explore the introduction of more information from the probability distribution functions of service times in order to improve the bounds. In particular, for Coxian service delay of transitions it is possible to improve the throughput upper bounds of previous chapters which held for more general forms of distribution functions. This improvement shows to be specially fruitful for live and bounded free choice nets. Chapter 7 is devoted to case studies. Several examples taken from literature in the fields of distributed computing systems and manufacturing systems are modelled by means of stochastic Petri nets and evaluated using the techniques developed in previous chapters. Finally, some concluding remarks and considerations on possible extensions of the work are presented
    corecore