136,016 research outputs found

    On resolving conflicts between arguments

    Full text link
    Argument systems are based on the idea that one can construct arguments for propositions; i.e., structured reasons justifying the belief in a proposition. Using defeasible rules, arguments need not be valid in all circumstances, therefore, it might be possible to construct an argument for a proposition as well as its negation. When arguments support conflicting propositions, one of the arguments must be defeated, which raises the question of \emph{which (sub-)arguments can be subject to defeat}? In legal argumentation, meta-rules determine the valid arguments by considering the last defeasible rule of each argument involved in a conflict. Since it is easier to evaluate arguments using their last rules, \emph{can a conflict be resolved by considering only the last defeasible rules of the arguments involved}? We propose a new argument system where, instead of deriving a defeat relation between arguments, \emph{undercutting-arguments} for the defeat of defeasible rules are constructed. This system allows us, (\textit{i}) to resolve conflicts (a generalization of rebutting arguments) using only the last rules of the arguments for inconsistencies, (\textit{ii}) to determine a set of valid (undefeated) arguments in linear time using an algorithm based on a JTMS, (\textit{iii}) to establish a relation with Default Logic, and (\textit{iv}) to prove closure properties such as \emph{cumulativity}. We also propose an extension of the argument system that enables \emph{reasoning by cases}

    Normative Conditional Reasoning as a Fragment of HOL

    Full text link
    We report some results regarding the mechanization of normative (preference-based) conditional reasoning. Our focus is on Aqvist's system E for conditional obligation (and its extensions). Our mechanization is achieved via a shallow semantical embedding in Isabelle/HOL. We consider two possible uses of the framework. The first one is as a tool for meta-reasoning about the considered logic. We employ it for the automated verification of deontic correspondences (broadly conceived) and related matters, analogous to what has been previously achieved for the modal logic cube. The second use is as a tool for assessing ethical arguments. We provide a computer encoding of a well-known paradox in population ethics, Parfit's repugnant conclusion. Whether the presented encoding increases or decreases the attractiveness and persuasiveness of the repugnant conclusion is a question we would like to pass on to philosophy and ethics.Comment: 22 pages, 28 figures, 3 table

    A Unifying Survey on Weighted Logics and Weighted Automata: Core Weighted Logic: Minimal and Versatile Specification of Quantitative Properties

    Get PDF
    International audienceLogical formalisms equivalent to weighted automata have been the topic of numerous research papers in the recent years. It started with the seminal result by Droste and Gastin on weighted logics over semir-ings for words. It has been extended in two dimensions by many authors. First, the weight domain has been extended to valuation monoids, valuation structures, etc., to capture more quantitative properties. Along another dimension, different structures such as ranked or unranked trees, nested words, Mazurkiewiz traces, etc., have been considered. The long and involved proofs of equivalences in all these papers are implicitely based on the same core arguments. This article provides a meta-theorem which unifies these different approaches. Towards this, we first introduce a core weighted logic with a minimal number of features and a simplified syntax. Then, we define a new semantics for weighted automata and weighted logics in two phases—an abstract semantics based on multisets of weight structures (independent of particular weight domains) followed by a concrete semantics. We show at the level of the abstract semantics that weighted automata and core weighted logic have the same expressive power. We show how previous results can be recovered from our result by logical reasoning. In this paper, we prove the meta-theorem for words, ranked and unranked trees, showing the robustness of our approach

    Universal (Meta-)Logical Reasoning: Recent Successes

    Get PDF
    Classical higher-order logic, when utilized as a meta-logic in which various other (classical and non-classical) logics can be shallowly embedded, is suitable as a foundation for the development of a universal logical reasoning engine. Such an engine may be employed, as already envisioned by Leibniz, to support the rigorous formalisation and deep logical analysis of rational arguments on the computer. A respective universal logical reasoning framework is described in this article and a range of successful first applications in philosophy, artificial intelligence and mathematics are surveyed

    Token-Reflexivity and Repetition

    Get PDF
    The classical rule of Repetition says that if you take any sentence as a premise, and repeat it as a conclusion, you have a valid argument. It's a very basic rule of logic, and many other rules depend on the guarantee that repeating a sentence, or really, any expression, guarantees sameness of referent, or semantic value. However, Repetition fails for token-reflexive expressions. In this paper, I offer three ways that one might replace Repetition, and still keep an interesting notion of validity. Each is a fine way to go for certain purposes, but I argue that one in particular is to be preferred by the semanticist who thinks that there are token-reflexive expressions in natural languages
    • …
    corecore