272,319 research outputs found

    Coloring translates and homothets of a convex body

    Full text link
    We obtain improved upper bounds and new lower bounds on the chromatic number as a linear function of the clique number, for the intersection graphs (and their complements) of finite families of translates and homothets of a convex body in \RR^n.Comment: 11 pages, 2 figure

    A lower bound for the height of a rational function at SS-unit points

    Full text link
    Let Γ\Gamma be a finitely generated subgroup of the multiplicative group \G_m^2(\bar{Q}). Let p(X,Y),q(X,Y)\in\bat{Q} be two coprime polynomials not both vanishing at (0,0)(0,0); let ϵ>0\epsilon>0. We prove that, for all (u,v)Γ(u,v)\in\Gamma outside a proper Zariski closed subset of Gm2G_m^2, the height of p(u,v)/q(u,v)p(u,v)/q(u,v) verifies h(p(u,v)/q(u,v))>h(1:p(u,v):q(u,v))ϵmax(h(uu),h(v))h(p(u,v)/q(u,v))>h(1:p(u,v):q(u,v))-\epsilon \max(h(uu),h(v)). As a consequence, we deduce upper bounds for (a generalized notion of) the g.c.d. of u1,v1u-1,v-1 for u,vu,v running over Γ\Gamma.Comment: Plain TeX 18 pages. Version 2; minor changes. To appear on Monatshefte fuer Mathemati

    On covering by translates of a set

    Full text link
    In this paper we study the minimal number of translates of an arbitrary subset SS of a group GG needed to cover the group, and related notions of the efficiency of such coverings. We focus mainly on finite subsets in discrete groups, reviewing the classical results in this area, and generalizing them to a much broader context. For example, we show that while the worst-case efficiency when SS has kk elements is of order 1/logk1/\log k, for kk fixed and nn large, almost every kk-subset of any given nn-element group covers GG with close to optimal efficiency.Comment: 41 pages; minor corrections; to appear in Random Structures and Algorithm

    Highly saturated packings and reduced coverings

    Full text link
    We introduce and study certain notions which might serve as substitutes for maximum density packings and minimum density coverings. A body is a compact connected set which is the closure of its interior. A packing P\cal P with congruent replicas of a body KK is nn-saturated if no n1n-1 members of it can be replaced with nn replicas of KK, and it is completely saturated if it is nn-saturated for each n1n\ge 1. Similarly, a covering C\cal C with congruent replicas of a body KK is nn-reduced if no nn members of it can be replaced by n1n-1 replicas of KK without uncovering a portion of the space, and it is completely reduced if it is nn-reduced for each n1n\ge 1. We prove that every body KK in dd-dimensional Euclidean or hyperbolic space admits both an nn-saturated packing and an nn-reduced covering with replicas of KK. Under some assumptions on KEdK\subset \mathbb{E}^d (somewhat weaker than convexity), we prove the existence of completely saturated packings and completely reduced coverings, but in general, the problem of existence of completely saturated packings and completely reduced coverings remains unsolved. Also, we investigate some problems related to the the densities of nn-saturated packings and nn-reduced coverings. Among other things, we prove that there exists an upper bound for the density of a d+2d+2-reduced covering of Ed\mathbb{E}^d with congruent balls, and we produce some density bounds for the nn-saturated packings and nn-reduced coverings of the plane with congruent circles

    Unsplittable coverings in the plane

    Get PDF
    A system of sets forms an {\em mm-fold covering} of a set XX if every point of XX belongs to at least mm of its members. A 11-fold covering is called a {\em covering}. The problem of splitting multiple coverings into several coverings was motivated by classical density estimates for {\em sphere packings} as well as by the {\em planar sensor cover problem}. It has been the prevailing conjecture for 35 years (settled in many special cases) that for every plane convex body CC, there exists a constant m=m(C)m=m(C) such that every mm-fold covering of the plane with translates of CC splits into 22 coverings. In the present paper, it is proved that this conjecture is false for the unit disk. The proof can be generalized to construct, for every mm, an unsplittable mm-fold covering of the plane with translates of any open convex body CC which has a smooth boundary with everywhere {\em positive curvature}. Somewhat surprisingly, {\em unbounded} open convex sets CC do not misbehave, they satisfy the conjecture: every 33-fold covering of any region of the plane by translates of such a set CC splits into two coverings. To establish this result, we prove a general coloring theorem for hypergraphs of a special type: {\em shift-chains}. We also show that there is a constant c>0c>0 such that, for any positive integer mm, every mm-fold covering of a region with unit disks splits into two coverings, provided that every point is covered by {\em at most} c2m/2c2^{m/2} sets
    corecore